diff options
author | Andreas Müller <andreas.mueller@ost.ch> | 2021-03-09 11:10:02 +0100 |
---|---|---|
committer | Andreas Müller <andreas.mueller@ost.ch> | 2021-03-09 11:10:02 +0100 |
commit | ecc99689218d54f550a3e393c6536592d3678e93 (patch) | |
tree | d39c142859b03b3bb624f9cc2db4f8951ae4bed0 /vorlesungen/slides/5/potenzreihenmethode.tex | |
parent | algebranormen (diff) | |
download | SeminarMatrizen-ecc99689218d54f550a3e393c6536592d3678e93.tar.gz SeminarMatrizen-ecc99689218d54f550a3e393c6536592d3678e93.zip |
potenzreihenmethode
Diffstat (limited to 'vorlesungen/slides/5/potenzreihenmethode.tex')
-rw-r--r-- | vorlesungen/slides/5/potenzreihenmethode.tex | 93 |
1 files changed, 93 insertions, 0 deletions
diff --git a/vorlesungen/slides/5/potenzreihenmethode.tex b/vorlesungen/slides/5/potenzreihenmethode.tex new file mode 100644 index 0000000..0c3503d --- /dev/null +++ b/vorlesungen/slides/5/potenzreihenmethode.tex @@ -0,0 +1,93 @@ +% +% potenzreihenmethode.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Potenzreihenmethode} +\vspace{-15pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Lineare Differentialgleichung} +\vspace{-12pt} +\begin{align*} +y'&=ay&&\Rightarrow&y'-ay&=0 +\\ +y(0)&=C +\end{align*} +\end{block} +\end{column} +\begin{column}{0.48\textwidth} +\uncover<2->{% +\begin{block}{Potenzreihenansatz} +\vspace{-12pt} +\begin{align*} +y(x) +&= +a_0+ a_1x + a_2x^2 + \dots +\\ +y(0)&=a_0=C +\end{align*} +\end{block}} +\end{column} +\end{columns} +\uncover<3->{% +\begin{block}{Lösung} +\vspace{-12pt} +\[ +\arraycolsep=1.4pt +\begin{array}{rcrcrcrcrcr} +\uncover<3->{ y'(x)} + \uncover<5->{ + &=&\phantom{(} a_1\phantom{\mathstrut-aa_0)} + &+& 2a_2\phantom{\mathstrut-aa_1)}x + &+& 3a_3\phantom{\mathstrut-aa_2)}x^2 + &+& 4a_4\phantom{\mathstrut-aa_3)}x^3 + &+& \dots}\\ +\uncover<3->{-ay(x)} + \uncover<6->{ + &=&\mathstrut-aa_0 \phantom{)} + &-& aa_1\phantom{)}x + &-& aa_2\phantom{)}x^2 + &-& aa_3\phantom{)}x^3 + &-& \dots}\\[2pt] +\hline +\\[-10pt] +\uncover<3->{0} + \uncover<7->{ + &=&(a_1-aa_0) + &+& (2a_2-aa_1)x + &+& (3a_3-aa_2)x^2 + &+& (4a_4-aa_3)x^3 + &+& \dots}\\ +\end{array} +\] +\begin{align*} +\uncover<4->{ +a_0&=C}\uncover<8->{, +\quad +a_1=aa_0=aC}\uncover<9->{, +\quad +a_2=\frac12a^2C}\uncover<10->{, +\quad +a_3=\frac16a^3C}\uncover<11->{, +\dots +a_k=\frac1{k!}a^kC} +\hspace{3cm} +\\ +\uncover<4->{ +\Rightarrow y(x) &= C}\uncover<8->{+Cax}\uncover<9->{ + C\frac12(ax)^2} +\uncover<10->{ + C \frac16(ac)^3} +\uncover<11->{ + \dots+C\frac{1}{k!}(ax)^k+\dots} +\ifthenelse{\boolean{presentation}}{ +\only<12>{ += +C\sum_{k=0}^\infty \frac{(ax)^k}{k!}} +}{} +\uncover<13->{= +Ce^{ax}} +\end{align*} +\end{block}} +\end{frame} |