diff options
author | LordMcFungus <mceagle117@gmail.com> | 2021-03-22 18:05:11 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2021-03-22 18:05:11 +0100 |
commit | 76d2d77ddb2bed6b7c6b8ec56648d85da4103ab7 (patch) | |
tree | 11b2d41955ee4bfa0ae5873307c143f6b4d55d26 /vorlesungen/slides/5/satzvongelfand.tex | |
parent | more chapter structure (diff) | |
parent | add title image (diff) | |
download | SeminarMatrizen-76d2d77ddb2bed6b7c6b8ec56648d85da4103ab7.tar.gz SeminarMatrizen-76d2d77ddb2bed6b7c6b8ec56648d85da4103ab7.zip |
Merge pull request #1 from AndreasFMueller/master
update
Diffstat (limited to 'vorlesungen/slides/5/satzvongelfand.tex')
-rw-r--r-- | vorlesungen/slides/5/satzvongelfand.tex | 89 |
1 files changed, 89 insertions, 0 deletions
diff --git a/vorlesungen/slides/5/satzvongelfand.tex b/vorlesungen/slides/5/satzvongelfand.tex new file mode 100644 index 0000000..3cf8710 --- /dev/null +++ b/vorlesungen/slides/5/satzvongelfand.tex @@ -0,0 +1,89 @@ +% +% satzvongelfand.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{0pt} +\setlength{\belowdisplayskip}{0pt} +\setbeamercolor{block body}{bg=blue!20} +\setbeamercolor{block title}{bg=blue!20} +\frametitle{Satz von Gelfand} +{\usebeamercolor[fg]{title}Behauptung:} $\varrho(A)=\pi(A)$\uncover<2->{, +$A(\varepsilon) = \displaystyle\frac{A}{\varrho(A)+\varepsilon}$}\uncover<3->{, +$\varrho(A(\varepsilon))=\displaystyle\frac{\varrho(A)}{\varrho(A)+\varepsilon} +\uncover<4->{=\frac{1}{1+\varepsilon/\varrho(A)}}$} + +\uncover<5->{% +%{\usebeamercolor[fg]{title}Beweisidee:} +%$\displaystyle\pi\biggl(\frac{A}{\varrho(A)+\epsilon}\biggr) +%= +%\frac{\pi(A)}{\varrho(A)+\epsilon}$ berechnen +\vspace{-5pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{$\varepsilon < 0$} +\vspace{-10pt} +\begin{align*} +\uncover<6->{ +\varrho(A(\varepsilon))&>1}\uncover<7->{\quad\Rightarrow\quad \|A(\varepsilon)^k\|\to \infty} +\\ +\uncover<8->{\|A(\varepsilon)^k\| &\ge m\varrho(A(\varepsilon))^k} +\\ +\uncover<9->{\|A(\varepsilon)^k\|^{\frac1k} &\ge m^{\frac1k} \varrho(A(\varepsilon))} +\\ +\uncover<10->{\pi(A) &\ge \lim_{k\to\infty}m^{\frac1k}\varrho(A(\varepsilon))} +\\ +&\uncover<11->{= \varrho(A(\varepsilon))}\uncover<12->{ > 1} +\\ +\uncover<13->{\frac{ \pi(A(\varepsilon))}{\varrho(A)+\varepsilon} &> 1} +\\ +\uncover<14->{ +\pi(A) &> \varrho(A)+\varepsilon +} +\end{align*} +\end{block} +\end{column} +\begin{column}{0.48\textwidth} +\begin{block}{$\varepsilon > 0$} +\vspace{-10pt} +\begin{align*} +\uncover<16->{ +\varrho(A(\varepsilon)) &<1} +\uncover<17->{\quad\Rightarrow\quad \|A(\varepsilon)^k\| \to 0} +\\ +\uncover<18->{\|A(\varepsilon)^k\| +&\le M\varrho(A(\varepsilon))^k} +\\ +\uncover<19->{ +\|A(\varepsilon)^k\|^{\frac1k} +&\le M^{\frac1k}\varrho(A(\varepsilon)) +} +\\ +\uncover<20->{ +\pi(A(\varepsilon)) +&\le +\varrho(A(\varepsilon)) \lim_{k\to\infty} M^{\frac1k} +} +\\ +&\uncover<21->{= \varrho(A(\varepsilon))} +\uncover<22->{ < 1} +\\ +\uncover<23->{\frac{\pi(A)}{\varrho(A)+\varepsilon}&< 1} +\\ +\uncover<24->{\pi(A)&< \varrho(A) + \varepsilon} +\end{align*} +\end{block} +\end{column} +\end{columns}} +\uncover<15->{% +\vspace{2pt} +{\usebeamercolor[fg]{title}Folgerung:} +$\varrho(A)-\varepsilon < \pi(A) \uncover<25->{< \varrho(A)+\varepsilon}\quad\forall\varepsilon>0 +\uncover<26->{ +\qquad\Rightarrow\qquad +\varrho(A)=\pi(A)}$ +} +\end{frame} +\egroup |