diff options
author | Nao Pross <np@0hm.ch> | 2021-05-07 00:14:48 +0200 |
---|---|---|
committer | Nao Pross <np@0hm.ch> | 2021-05-07 00:14:48 +0200 |
commit | 20f68f26c0f82496e63b422b65a849a607325ef1 (patch) | |
tree | 1403426884f2b1caeabfa36a0e2dd3ddf07c0689 /vorlesungen/slides/6/darstellungen/irreduzibel.tex | |
parent | Create slide to show all point groups (diff) | |
parent | neue folie (diff) | |
download | SeminarMatrizen-20f68f26c0f82496e63b422b65a849a607325ef1.tar.gz SeminarMatrizen-20f68f26c0f82496e63b422b65a849a607325ef1.zip |
Merge remote-tracking branch 'upstream/master'
Diffstat (limited to 'vorlesungen/slides/6/darstellungen/irreduzibel.tex')
-rw-r--r-- | vorlesungen/slides/6/darstellungen/irreduzibel.tex | 47 |
1 files changed, 47 insertions, 0 deletions
diff --git a/vorlesungen/slides/6/darstellungen/irreduzibel.tex b/vorlesungen/slides/6/darstellungen/irreduzibel.tex new file mode 100644 index 0000000..91d8a18 --- /dev/null +++ b/vorlesungen/slides/6/darstellungen/irreduzibel.tex @@ -0,0 +1,47 @@ +% +% irreduzibel.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Irreduzible Darstellungen} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Definition} +Eine Darstellung $\varrho\colon G\to\operatorname{GL}(V)$ heisst +irreduzibel, wenn es keine Zerlegung von $\varrho$ in zwei +Darstellungen $\varrho_i\colon G\to\operatorname{GL}(U_i)$ ($i=1,2$) +gibt derart, dass $\varrho = \varrho_1\oplus\varrho_2$ +\end{block} +\uncover<2->{% +\begin{block}{Isomorphe Darstellungen} +$\varrho_i$ sind {\em isomorphe} Darstellungen in $V_i$ wenn es +$f\colon V_1\overset{\cong}{\to} V_2$ gibt mit +\begin{align*} +f \circ \varrho_i(g)\circ f^{-1} &= \varrho_2(g) +\\ +\uncover<3->{% +f \circ \varrho_i(g)\phantom{\mathstrut\circ f^{-1}}&= \varrho_2(g)\circ f +} +\end{align*} +\end{block}} +\end{column} +\begin{column}{0.48\textwidth} +\uncover<4->{% +\begin{block}{Lemma von Schur} +$\varrho_i$ zwei irreduzible Darstellungen und $f$ so, dass +$f\circ \varrho_1(g)=\varrho_2(g)\circ f$ für alle $g$. +Dann gilt +\begin{enumerate} +\item<5-> $\varrho_i$ nicht isomorph $\Rightarrow$ $f=0$ +\item<6-> $V_1=V_2,\varrho_1=\varrho_2$ $\Rightarrow$ $f=\lambda I$ +\end{enumerate} +\end{block}} +\end{column} +\end{columns} +\end{frame} +\egroup |