diff options
author | JODBaer <JODBaer@github.com> | 2021-04-20 12:38:29 +0200 |
---|---|---|
committer | JODBaer <JODBaer@github.com> | 2021-04-20 12:38:29 +0200 |
commit | f9154b1070929ac3063a9676e11723e5ec0c8deb (patch) | |
tree | 3b2da1b4ee8f80ebe5c05a6c74f48832b57ffc9e /vorlesungen/slides/6 | |
parent | Merge remote-tracking branch 'upstream/master' (diff) | |
parent | Merge branch 'master' of github.com:AndreasFMueller/SeminarMatrizen (diff) | |
download | SeminarMatrizen-f9154b1070929ac3063a9676e11723e5ec0c8deb.tar.gz SeminarMatrizen-f9154b1070929ac3063a9676e11723e5ec0c8deb.zip |
Merge remote-tracking branch 'upstream/master'
Diffstat (limited to 'vorlesungen/slides/6')
-rw-r--r-- | vorlesungen/slides/6/Makefile.inc | 18 | ||||
-rw-r--r-- | vorlesungen/slides/6/chapter.tex | 16 | ||||
-rw-r--r-- | vorlesungen/slides/6/darstellungen/charakter.tex | 108 | ||||
-rw-r--r-- | vorlesungen/slides/6/darstellungen/definition.tex | 59 | ||||
-rw-r--r-- | vorlesungen/slides/6/darstellungen/irreduzibel.tex | 43 | ||||
-rw-r--r-- | vorlesungen/slides/6/darstellungen/schur.tex | 45 | ||||
-rw-r--r-- | vorlesungen/slides/6/darstellungen/skalarprodukt.tex | 39 | ||||
-rw-r--r-- | vorlesungen/slides/6/darstellungen/summe.tex | 82 | ||||
-rw-r--r-- | vorlesungen/slides/6/darstellungen/zyklisch.tex | 77 | ||||
-rw-r--r-- | vorlesungen/slides/6/permutationen/matrizen.tex | 75 |
10 files changed, 562 insertions, 0 deletions
diff --git a/vorlesungen/slides/6/Makefile.inc b/vorlesungen/slides/6/Makefile.inc new file mode 100644 index 0000000..b46d6b6 --- /dev/null +++ b/vorlesungen/slides/6/Makefile.inc @@ -0,0 +1,18 @@ +# +# Makefile.inc -- additional depencencies +# +# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +# +chapter6 = \ + ../slides/6/permutationen/matrizen.tex \ + \ + ../slides/6/darstellungen/definition.tex \ + ../slides/6/darstellungen/charakter.tex \ + ../slides/6/darstellungen/summe.tex \ + ../slides/6/darstellungen/irreduzibel.tex \ + ../slides/6/darstellungen/schur.tex \ + ../slides/6/darstellungen/skalarprodukt.tex \ + ../slides/6/darstellungen/zyklisch.tex \ + \ + ../slides/6/chapter.tex + diff --git a/vorlesungen/slides/6/chapter.tex b/vorlesungen/slides/6/chapter.tex new file mode 100644 index 0000000..37f442d --- /dev/null +++ b/vorlesungen/slides/6/chapter.tex @@ -0,0 +1,16 @@ +% +% chapter.tex +% +% (c) 2021 Prof Dr Andreas Müller, Hochschule Rapperswi +% + +\folie{6/permutationen/matrizen.tex} + +\folie{6/darstellungen/definition.tex} +\folie{6/darstellungen/charakter.tex} +\folie{6/darstellungen/summe.tex} +\folie{6/darstellungen/irreduzibel.tex} +\folie{6/darstellungen/schur.tex} +\folie{6/darstellungen/skalarprodukt.tex} +\folie{6/darstellungen/zyklisch.tex} + diff --git a/vorlesungen/slides/6/darstellungen/charakter.tex b/vorlesungen/slides/6/darstellungen/charakter.tex new file mode 100644 index 0000000..ea90b6d --- /dev/null +++ b/vorlesungen/slides/6/darstellungen/charakter.tex @@ -0,0 +1,108 @@ +% +% chrakter.tex -- Charakter einer Darstellung +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Charakter einer Darstellung} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.44\textwidth} +\begin{block}{Definition} +$\varrho\colon G\to\operatorname{GL}_n(\mathbb{C})$ eine Darstellung. +\\ +Der {\em Charakter} von $\varrho$ ist die Abbildung +\[ +\chi_{\varrho} +\colon +G\to \mathbb{C}^n +: +g\mapsto \chi_{\varrho}(g)=\operatorname{Spur}\varrho(g) +\] +\end{block} +\uncover<2->{% +\begin{block}{Eigenschaften} +\begin{enumerate} +\item +$\chi_{\varrho}(e) = n$ +\item<6-> +$\chi_{\varrho}(g^{-1}) = \overline{\chi_{\varrho}(g)}$ +\item<15-> +$\chi_{\varrho}(hgh^{-1}) = \chi_{\varrho}(g)$ +\end{enumerate} +\uncover<21->{% +Aus 3. folgt, dass Charaktere {\em Klassenfunktionen} sind} +\end{block}} +\end{column} +\begin{column}{0.52\textwidth} +\uncover<2->{% +\begin{block}{Begründung} +\begin{enumerate} +\item<3-> +$\chi_{\varrho}(e) += +\operatorname{Spur}\varrho(e) +\uncover<4->{= +\operatorname{Spur}I_n} +\uncover<5->{= +n} +$ +\item<6-> +$g$ hat endliche Ordnung, d.~h.~$g^k=e$ +\\ +\uncover<7->{% +$\lambda_i$ in der Jordan-NF erfüllen $\lambda_i^k=1$} +\\ +$\uncover<8->{\Rightarrow|\lambda_i|=1} +\uncover<9->{\Rightarrow \lambda_i^{-1} = \overline{\lambda_i}}$ +\begin{align*} +\uncover<10->{ +\llap{$\chi_{\varrho}(g^{-1})$} +&= +\operatorname{Spur}(\varrho(g^{-1}))} +\uncover<11->{= +\sum_{i} n_i\overline{\lambda_i}} +\\[-4pt] +&\uncover<12->{= +\overline{ +\sum_{i} n_i\lambda_i +}} +\uncover<13->{= +\operatorname{Spur}\varrho(g)} +\uncover<14->{= +\chi_{\varrho}(g)} +\end{align*} +\item<16-> +Durch Nachrechnen: +\begin{align*} +\chi_{\varrho}(hgh^{-1}) +&\uncover<17->{= +\operatorname{Spur} +( +\varrho(h) +\varrho(g) +\varrho(h^{-1}) +)} +\\ +&\uncover<18->{= +\operatorname{Spur} +( +\varrho(h^{-1}) +\varrho(h) +\varrho(g) +)} +\\ +&\uncover<19->{= +\operatorname{Spur}\varrho(g)} +\uncover<20->{= +\chi_{\varrho}(g)} +\end{align*} +\end{enumerate} +\end{block}} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/6/darstellungen/definition.tex b/vorlesungen/slides/6/darstellungen/definition.tex new file mode 100644 index 0000000..9d93e7f --- /dev/null +++ b/vorlesungen/slides/6/darstellungen/definition.tex @@ -0,0 +1,59 @@ +% +% definition.tex -- Definition einer Darstellung +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Darstellung} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Definition} +$G$ eine Gruppe, $V$ ein $\Bbbk$-Vektorraum. +\\ +\uncover<2->{% +Ein Homomorphismus +\[ +\varrho +\colon +G\to \operatorname{GL}(V) +\] +heisst {\em $n$-dimensionale Darstellung} der Gruppe $G$.} +\end{block} +\uncover<3->{% +\begin{block}{Idee} +Algebra und Analysis in $\operatorname{GL}_n(\Bbbk)$ nutzen, um +mehr über $G$ herauszufinden +\end{block}} +\end{column} +\begin{column}{0.48\textwidth} +\uncover<4->{% +\begin{block}{Beispiel $S_n$} +$S_n$ die symmetrische Gruppe, +$\sigma\mapsto A_{\tilde{f}}$ die +Abbildung auf die zugehörige Permutationsmatrix +ist eine $n$-dimensionale Darstellung von $S_n$ +\end{block}} +\uncover<5->{% +\begin{block}{Beispiel Matrizengruppe} +Eine Matrizengruppe $G$ ist eine Teilmenge von $M_n(\Bbbk)$. +\\ +\uncover<6->{% +$g\in G \Rightarrow g^{-1}\in G$, daher $G\subset\operatorname{GL}_n(\Bbbk)$} +\\ +\uncover<7->{% +Die Einbettung +\[ +G\to\operatorname{GL}_n(\Bbbk) +: +g \mapsto g +\] +ist eine Darstellung}\uncover<8->{, die sog.~{\em reguläre Darstellung}} +\end{block}} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/6/darstellungen/irreduzibel.tex b/vorlesungen/slides/6/darstellungen/irreduzibel.tex new file mode 100644 index 0000000..6a6991e --- /dev/null +++ b/vorlesungen/slides/6/darstellungen/irreduzibel.tex @@ -0,0 +1,43 @@ +% +% irreduzibel.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Irreduzible Darstellungen} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Definition} +Eine Darstellung $\varrho\colon G\to\operatorname{GL}(V)$ heisst +irreduzibel, wenn es keine Zerlegung von $\varrho$ in zwei +Darstellungen $\varrho_i\colon G\to\operatorname{GL}(U_i)$ ($i=1,2$) +gibt derart, dass $\varrho = \varrho_1\oplus\varrho_2$ +\end{block} +\begin{block}{Isomorphe Darstellungen} +$\varrho_i$ sind {\em isomorphe} Darstellungen in $V_i$ wenn es +$f\colon V_1\overset{\cong}{\to} V_2$ gibt mit +\begin{align*} +f \circ \varrho_i(g)\circ f^{-1} &= \varrho_2(g) +\\ +f \circ \varrho_i(g)\phantom{\mathstrut\circ f^{-1}}&= \varrho_2(g)\circ f +\end{align*} +\end{block} +\end{column} +\begin{column}{0.48\textwidth} +\begin{block}{Lemma von Schur} +$\varrho_i$ zwei irreduzible Darstellungen und $f$ so, dass +$f\circ \varrho_1(g)=\varrho_2(g)\circ f$ für alle $g$. +Dann gilt +\begin{enumerate} +\item $\varrho_i$ nicht isomorph $\Rightarrow$ $f=0$ +\item $V_1=V_2$ $\Rightarrow$ $f=\lambda I$ +\end{enumerate} +\end{block} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/6/darstellungen/schur.tex b/vorlesungen/slides/6/darstellungen/schur.tex new file mode 100644 index 0000000..69ce9ee --- /dev/null +++ b/vorlesungen/slides/6/darstellungen/schur.tex @@ -0,0 +1,45 @@ +% +% schur.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Folgerungen aus Schurs Lemma} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Mittelung einer Abbildung} +$h\colon V_1\to V_2$ +\[ +h^G = \frac{1}{|G|} \sum_{g\in G} \varrho_2(g)^{-1} \circ f \circ \varrho_1(g) +\] +\begin{enumerate} +\item $\varrho_i$ nicht isomorph $\Rightarrow$ $h^G=0$ +\item $V_1=V_2$, $h^G = \frac1n\operatorname{Spur}h$ +\end{enumerate} +\end{block} +\begin{block}{Matrixelemente für $\varrho_i$ nicht isomorph} +$\varrho_i$ nicht isomorph, dann ist +\[ +\frac{1}{|G|} \sum_{g\in G} \varrho_1(g^{-1})_{kl}\varrho_2(g)_{uv}=0 +\] +für alle $k,l,u,v$ +\end{block} +\end{column} +\begin{column}{0.48\textwidth} +\begin{block}{Matrixelemente $V_1=V_2$, $\varrho_i$ iso} +F¨r $k=v$ und $l=u$ gilt +\[ +\frac{1}{|G|} \sum_{g\in G} \varrho_1(g^{-1})_{kl} \varrho_2(g)_{uv} += +\frac1n +\] +und $=0$ sonst +\end{block} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/6/darstellungen/skalarprodukt.tex b/vorlesungen/slides/6/darstellungen/skalarprodukt.tex new file mode 100644 index 0000000..653bdce --- /dev/null +++ b/vorlesungen/slides/6/darstellungen/skalarprodukt.tex @@ -0,0 +1,39 @@ +% +% skalarprodukt.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Skalarprodukt} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Definition des Skalarproduktes} +$\varphi$, $\psi$ komplexe Funktionen auf $G$: +\[ +\langle \varphi,\psi\rangle += +\frac{1}{|G|} \sum_{g\in G} \overline{\varphi(g)} \psi(g) +\] +\end{block} +\end{column} +\begin{column}{0.48\textwidth} +\begin{block}{Satz} +\begin{enumerate} +\item +$\chi$ der Charakter einer irrediziblen Darstellung +$\Rightarrow$ $\langle \chi,\chi\rangle=1$. +\item +$\chi$ und $\chi'$ Charaktere nichtisomorpher Darstellungen +$\Rightarrow$ +$\langle \chi,\chi'\rangle=0$ +\end{enumerate} +D.~h.~Charaktere irreduzibler Darstellungen sind orthonormiert +\end{block} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/6/darstellungen/summe.tex b/vorlesungen/slides/6/darstellungen/summe.tex new file mode 100644 index 0000000..9152e1f --- /dev/null +++ b/vorlesungen/slides/6/darstellungen/summe.tex @@ -0,0 +1,82 @@ +% +% Summe.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Direkte Summe} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Gegeben} +Gegeben zwei Darstellungen +\begin{align*} +\varrho_1&\colon G \to \mathbb{C}^{n_1} +\\ +\varrho_2&\colon G \to \mathbb{C}^{n_2} +\end{align*} +\end{block} +\vspace{-12pt} +\begin{block}{Direkte Summe der Darstellungen} +\vspace{-12pt} +\begin{align*} +\varrho_1\oplus\varrho_2 +&\colon +G\to \mathbb{C}^{n_1+n_2} = \mathbb{C}^{n_1}\times\mathbb{C}^{n_2} +=: +\mathbb{C}^{n_1}\oplus\mathbb{C}^{n_2} +\\ +&\colon g\mapsto (\varrho_1(g),\varrho_2(g)) +\end{align*} +\end{block} +\vspace{-12pt} +\begin{block}{Charakter} +\vspace{-12pt} +\begin{align*} +\chi_{\varrho_1\oplus\varrho_2}(g) +&= +\operatorname{Spur}(\varrho_1\oplus\varrho_2)(g) +\\ +&= +\operatorname{Spur}{\varrho_1(g)} ++ +\operatorname{Spur}{\varrho_1(g)} +\\ +&= +\chi_{\varrho_1}(g) ++ +\chi_{\varrho_2}(g) +\end{align*} +\end{block} +\end{column} +\begin{column}{0.48\textwidth} +\begin{block}{Tensorprodukt} +$n_1\times n_2$-dimensionale +Darstellung $\varrho_1\otimes\varrho_2$ mit Matrix +\[ +\begin{pmatrix} +\varrho_1(g)_{11} \varrho_2(g) + &\dots + &\varrho_1(g)_{1n_1} \varrho_2(g)\\ +\vdots&\ddots&\vdots\\ +\varrho_1(g)_{n_11} \varrho_2(g) + &\dots + &\varrho_1(g)_{n_1n_1} \varrho_2(g) +\end{pmatrix} +\] +Die ``Einträge'' sind $n_2\times n_2$-Blöcke +\end{block} +\begin{block}{Darstellungsring} +Die Menge der Darstellungen $R(G)$ einer Gruppe hat +einer Ringstruktur mit $\oplus$ und $\otimes$ +\\ +$\Rightarrow$ +Algebra zum Studium der möglichen Darstellungen von $G$ verwenden +\end{block} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/6/darstellungen/zyklisch.tex b/vorlesungen/slides/6/darstellungen/zyklisch.tex new file mode 100644 index 0000000..6e36d1d --- /dev/null +++ b/vorlesungen/slides/6/darstellungen/zyklisch.tex @@ -0,0 +1,77 @@ +% +% zyklisch.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Beispiel: Zyklische Gruppen} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Gruppe} +\( +C_n = \mathbb{Z}/n\mathbb{Z} +\) +\end{block} +\begin{block}{Darstellungen von $C_n$} +Gegeben durch $\varrho_k(1)=e^{2\pi i k/n}$, +\[ +\varrho_k(l) = e^{2\pi ikl/n} +\] +\end{block} +\vspace{-10pt} +\begin{block}{Charaktere} +\vspace{-10pt} +\[ +\chi_k(l) = e^{2\pi ikl/n} +\] +haben Skalarprodukte +\[ +\langle \chi_k,\chi_{k'}\rangle += +\begin{cases} +1&\quad k= k'\\ +0&\quad\text{sonst} +\end{cases} +\] +Die Darstellungen $\chi_k$ sind nicht isomorph +\end{block} +\end{column} +\begin{column}{0.48\textwidth} +\begin{block}{Orthonormalbasis} +Die Funktionen $\chi_k$ bilden eine Orthonormalbasis von $L^2(C_n)$ +\end{block} +\vspace{-4pt} +\begin{block}{Analyse einer Darstellung} +$\varrho\colon C_n\to \mathbb{C}^n$ eine Darstellung, +$\chi_\varrho$ der Charakter lässt zerlegen: +\begin{align*} +c_k +&= +\langle \chi_k, \chi\rangle = \frac{1}{n} \sum_{l} \chi_k(l) e^{-2\pi ilk/n} +\\ +\chi(l) +&= +\sum_{k} c_k \chi_k += +\sum_{k} c_k e^{2\pi ikl/n} +\end{align*} +\end{block} +\vspace{-13pt} +\begin{block}{Fourier-Theorie} +\vspace{-3pt} +\begin{center} +\begin{tabular}{>{$}l<{$}l} +C_n&Diskrete Fourier-Theorie\\ +U(1)&Fourier-Reihen\\ +\mathbb{R}&Fourier-Integral +\end{tabular} +\end{center} +\end{block} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/6/permutationen/matrizen.tex b/vorlesungen/slides/6/permutationen/matrizen.tex new file mode 100644 index 0000000..346993d --- /dev/null +++ b/vorlesungen/slides/6/permutationen/matrizen.tex @@ -0,0 +1,75 @@ +% +% matrizen.tex -- Darstellung der Permutationen als Matrizen +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Permutationsmatrizen} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Permutationsabbildung} +$\sigma\in S_n$ eine Permutation, definiere +\[ +f +\colon +e_i \mapsto e_{\sigma(i)} +\] +($e_i$ Standardbasisvektor) +\end{block} +\begin{block}{Lineare Abbildung} +$f$ kann erweitert werden zu einer linearen Abbildung +\[ +\tilde{f} +\colon +\Bbbk^n \to \Bbbk^n +: +\sum_{k=1}^n a_i e_i +\mapsto +\sum_{k=1}^n a_i f(e_i) +\] +\end{block} +\end{column} +\begin{column}{0.48\textwidth} +\begin{block}{Permutationsmatrix} +Matrix $A_{\tilde{f}}$ der linearen Abbildung $\tilde{f}$ +hat die Matrixelemente +\[ +a_{ij} += +\begin{cases} +1&\qquad i=\sigma(j)\\ +0&\qquad\text{sonst} +\end{cases} +\] +\end{block} +\vspace{-10pt} +\begin{block}{Beispiel} +\vspace{-20pt} +\[ +\begin{pmatrix} +1&2&3&4\\ +3&2&4&1 +\end{pmatrix} +\mapsto +\begin{pmatrix} +0&0&0&1\\ +0&1&0&0\\ +1&0&0&0\\ +0&0&1&0 +\end{pmatrix} +\] +\end{block} +\vspace{-10pt} +\begin{block}{Homomorphismus} +Die Abbildung +$S_n\to\operatorname{GL}(\Bbbk)\colon \sigma \mapsto A_{\tilde{f}}$ +ist ein Homomorphismus +\end{block} +\end{column} +\end{columns} +\end{frame} +\egroup |