diff options
author | Nao Pross <np@0hm.ch> | 2021-04-13 19:48:07 +0200 |
---|---|---|
committer | Nao Pross <np@0hm.ch> | 2021-04-13 19:48:07 +0200 |
commit | d1b602b59a428bea7a59655cd5af34a919e7acf5 (patch) | |
tree | c9ad2469eb5c287d60179e4b57f78373e977a4dc /vorlesungen/slides/7/algebraisch.tex | |
parent | Add outline (diff) | |
parent | typos (diff) | |
download | SeminarMatrizen-d1b602b59a428bea7a59655cd5af34a919e7acf5.tar.gz SeminarMatrizen-d1b602b59a428bea7a59655cd5af34a919e7acf5.zip |
Merge branch 'master' of https://github.com/AndreasFMueller/SeminarMatrizen
Diffstat (limited to '')
-rw-r--r-- | vorlesungen/slides/7/algebraisch.tex | 115 |
1 files changed, 115 insertions, 0 deletions
diff --git a/vorlesungen/slides/7/algebraisch.tex b/vorlesungen/slides/7/algebraisch.tex new file mode 100644 index 0000000..31d209a --- /dev/null +++ b/vorlesungen/slides/7/algebraisch.tex @@ -0,0 +1,115 @@ +% +% algebraisch.tex -- algebraische Definition der Symmetrien +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Erhaltungsgrössen und Algebra} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Längen und Winkel} +Längenmessung mit Skalarprodukt +\begin{align*} +\|\vec{v}\|^2 +&= +\langle \vec{v},\vec{v}\rangle += +\vec{v}\cdot \vec{v} +\uncover<2->{= +\vec{v}^t\vec{v}} +\end{align*} +\end{block} +\end{column} +\begin{column}{0.48\textwidth} +\uncover<3->{% +\begin{block}{Flächeninhalt/Volumen} +$n$ Vektoren $V=(\vec{v}_1,\dots,\vec{v}_n)$ +\\ +Volumen des Parallelepipeds: $\det V$ +\end{block}} +\end{column} +\end{columns} +% +\vspace{-7pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\uncover<4->{% +\begin{block}{Längenerhaltende Transformationen} +$A\in\operatorname{GL}_n(\mathbb{R})$ +\begin{align*} +\vec{x}^t\vec{y} +&= +(A\vec{x}) +\cdot +(A\vec{y}) +\uncover<5->{= +(A\vec{x})^t +(A\vec{y})} +\\ +\uncover<6->{ +\vec{x}^tI\vec{y} +&= +\vec{x}^tA^tA\vec{y}} +\uncover<7->{ +\Rightarrow I=A^tA} +\end{align*} +\uncover<8->{Begründung: $\vec{e}_i^t B \vec{e}_j = b_{ij}$} +\end{block}} +\end{column} +\begin{column}{0.48\textwidth} +\uncover<9->{% +\begin{block}{Volumenerhaltende Transformationen} +$A\in\operatorname{GL}_n(\mathbb{R})$ +\begin{align*} +\det(V) +&= +\det(AV) +\uncover<10->{= +\det(A)\det(V)} +\\ +\uncover<11->{ +1&=\det(A)} +\end{align*} +\uncover<10->{ +(Produktsatz für Determinante) +} +\end{block}} +\end{column} +\end{columns} +% +\vspace{-3pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\uncover<12->{% +\begin{block}{Orthogonale Matrizen} +Längentreue Abbildungen = orthogonale Matrizen: +\[ +O(n) += +\{ +A \in \operatorname{GL}_n(\mathbb{R}) +\;|\; +A^tA=I +\} +\] +\end{block}} +\end{column} +\begin{column}{0.48\textwidth} +\uncover<13->{% +\begin{block}{``Spezielle'' Matrizen} +Volumen-/Orientierungserhaltende Transformationen: +\[ +\operatorname{SL}_n(\mathbb R) += +\{ A \in \operatorname{GL}_n(\mathbb{R}) \;|\; \det A = 1\} +\] +\end{block}} +\end{column} +\end{columns} + +\end{frame} +\egroup |