diff options
author | Andreas Müller <andreas.mueller@ost.ch> | 2021-06-14 07:26:10 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2021-06-14 07:26:10 +0200 |
commit | 114633b43a0f1ebedbc5dfd85f75ede9841f26fd (patch) | |
tree | 18e61c7d69883a1c9b69098b7d36856abaed5c1e /vorlesungen/slides/7/haar.tex | |
parent | Delete buch.pdf (diff) | |
parent | Fix references.bib (diff) | |
download | SeminarMatrizen-114633b43a0f1ebedbc5dfd85f75ede9841f26fd.tar.gz SeminarMatrizen-114633b43a0f1ebedbc5dfd85f75ede9841f26fd.zip |
Merge branch 'master' into master
Diffstat (limited to 'vorlesungen/slides/7/haar.tex')
-rw-r--r-- | vorlesungen/slides/7/haar.tex | 84 |
1 files changed, 84 insertions, 0 deletions
diff --git a/vorlesungen/slides/7/haar.tex b/vorlesungen/slides/7/haar.tex new file mode 100644 index 0000000..454dd69 --- /dev/null +++ b/vorlesungen/slides/7/haar.tex @@ -0,0 +1,84 @@ +% +% haar.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Haar-Mass} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Invariantes Mass} +Auf jeder lokalkompakten Gruppe $G$ gibt es ein \only<2->{invariantes }% +Integral +\begin{align*} +\uncover<2->{\text{rechts:}}&& +\int_G f(g)\,d\mu(g) +&\uncover<2->{= +\int_G f(gh)\,d\mu(g)} +\\ +\uncover<3->{ +\text{links:}&& +\int_G f(g)\,d\mu(g) +&= +\int_G f(hg)\,d\mu(g)} +\end{align*} + +\end{block} +\uncover<7->{% +\begin{block}{Modulus-Funktion} +$\mu$ linksinvariant, dann ist die Rechtsverschiebung ebenfalls +linksinvariant +\[ +\int_G f(gh) \, d\mu(g) +\uncover<8->{ += +\int_G f(g) \Delta(h)\, d\mu(g) +} +\] +\uncover<9->{$\Delta(h)$ heisst Modulus-Funktion} +\end{block}} +\end{column} +\begin{column}{0.48\textwidth} +\uncover<4->{% +\begin{block}{Beispiel: $G=\mathbb{R}$} +\[ +\int_Gf(g)\,d\mu(g) += +\int_{-\infty}^{\infty} f(x)\,dx +\] +\end{block}} +\vspace{-10pt} +\uncover<5->{% +\begin{block}{Beispiel: $\operatorname{SO}(2)$} +\[ +\int_{\operatorname{SO}(2)} +f(g)\,d\mu(g) += +\frac{1}{2\pi} +\int_{0}^{2\pi} f(D_{\alpha})\,d\alpha +\] +\end{block}} +\vspace{-10pt} +\uncover<6->{% +\begin{block}{Beispiel: $G$ endlich} +\[ +\int_G f(g)\,d\mu(g) = \frac{1}{|G|}\sum_{g\in G}f(g) +\] +\end{block}} +\vspace{-10pt} +\uncover<10->{% +\begin{block}{Unimodular} +$\Delta(h)=1$ heisst rechtsinvariant = linksinvariant +\\ +\uncover<11->{% +$G$ kompakt $\Rightarrow$ unimodular +} +\end{block}} +\end{column} +\end{columns} +\end{frame} +\egroup |