diff options
author | Andreas Müller <andreas.mueller@ost.ch> | 2021-06-14 07:26:10 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2021-06-14 07:26:10 +0200 |
commit | 114633b43a0f1ebedbc5dfd85f75ede9841f26fd (patch) | |
tree | 18e61c7d69883a1c9b69098b7d36856abaed5c1e /vorlesungen/slides/7/liealgebra.tex | |
parent | Delete buch.pdf (diff) | |
parent | Fix references.bib (diff) | |
download | SeminarMatrizen-114633b43a0f1ebedbc5dfd85f75ede9841f26fd.tar.gz SeminarMatrizen-114633b43a0f1ebedbc5dfd85f75ede9841f26fd.zip |
Merge branch 'master' into master
Diffstat (limited to 'vorlesungen/slides/7/liealgebra.tex')
-rw-r--r-- | vorlesungen/slides/7/liealgebra.tex | 85 |
1 files changed, 85 insertions, 0 deletions
diff --git a/vorlesungen/slides/7/liealgebra.tex b/vorlesungen/slides/7/liealgebra.tex new file mode 100644 index 0000000..574467b --- /dev/null +++ b/vorlesungen/slides/7/liealgebra.tex @@ -0,0 +1,85 @@ +% +% liealgebra.tex -- Lie-Algebra +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Lie-Algebra} +\ifthenelse{\boolean{presentation}}{\vspace{-15pt}}{\vspace{-8pt}} +\begin{block}{Vektorraum} +Tangentialvektoren im Punkt $I$: +\begin{center} +\begin{tabular}{>{$}c<{$}|p{6cm}|>{$}c<{$}} +\text{Lie-Gruppe $G$}&Tangentialvektoren&\text{Lie-Algebra $LG$} \\ +\hline +\uncover<2->{ +\operatorname{GL}_n(\mathbb{R}) +& beliebige Matrizen +& M_n(\mathbb{R}) +} +\\ +\uncover<3->{ +\operatorname{O(n)} +& antisymmetrische Matrizen +& \operatorname{o}(n) +} +\\ +\uncover<4->{ +\operatorname{SL}_n(\mathbb{R}) +& spurlose Matrizen +& \operatorname{sl}_2(\mathbb{R}) +} +\\ +\uncover<5->{ +\operatorname{U(n)} +& antihermitesche Matrizen +& \operatorname{u}(n) +} +\\ +\uncover<6->{ +\operatorname{SU(n)} +& spurlose, antihermitesche Matrizen +& \operatorname{su}(n) +} +\end{tabular} +\end{center} +\end{block} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.40\textwidth} +\uncover<7->{% +\begin{block}{Lie-Klammer} +Kommutator: $[A,B] = AB-BA$ +\end{block}} +\uncover<8->{% +\begin{block}{Nachprüfen} +$[A,B]\in LG$ +für $A,B\in LG$ +\end{block}} +\end{column} +\begin{column}{0.56\textwidth} +\uncover<9->{% +\begin{block}{Algebraische Eigenschaften} +\begin{itemize} +\item<10-> antisymmetrisch: $[A,B]=-[B,A]$ +\item<11-> Jacobi-Identität +\[ +[A,[B,C]]+ +[B,[C,A]]+ +[C,[A,B]] += 0 +\] +\end{itemize} +\vspace{-13pt} +\uncover<12->{% +{\usebeamercolor[fg]{title} +Beispiel:} $\mathbb{R}^3$ mit Vektorprodukt $\mathstrut = \operatorname{so}(3)$ +} +\end{block}} +\end{column} +\end{columns} +\end{frame} +\egroup |