diff options
author | Andreas Müller <andreas.mueller@ost.ch> | 2021-05-20 20:24:26 +0200 |
---|---|---|
committer | Andreas Müller <andreas.mueller@ost.ch> | 2021-05-20 20:24:26 +0200 |
commit | d3b772e811ac42cb912cce367b8e7bee07881084 (patch) | |
tree | 1dd80933a86f8d2cb98c6333d3093fbc2a951c1d /vorlesungen/slides/9/parrondo | |
parent | add new slides (diff) | |
download | SeminarMatrizen-d3b772e811ac42cb912cce367b8e7bee07881084.tar.gz SeminarMatrizen-d3b772e811ac42cb912cce367b8e7bee07881084.zip |
add slides
Diffstat (limited to '')
-rw-r--r-- | vorlesungen/slides/9/parrondo/deformation.tex | 21 | ||||
-rw-r--r-- | vorlesungen/slides/9/parrondo/erwartung.tex | 41 | ||||
-rw-r--r-- | vorlesungen/slides/9/parrondo/kombiniert.tex | 31 | ||||
-rw-r--r-- | vorlesungen/slides/9/parrondo/spiela.tex | 25 | ||||
-rw-r--r-- | vorlesungen/slides/9/parrondo/spielb.tex | 25 | ||||
-rw-r--r-- | vorlesungen/slides/9/parrondo/spielbmod.tex | 46 | ||||
-rw-r--r-- | vorlesungen/slides/9/parrondo/uebersicht.tex | 17 |
7 files changed, 136 insertions, 70 deletions
diff --git a/vorlesungen/slides/9/parrondo/deformation.tex b/vorlesungen/slides/9/parrondo/deformation.tex index 4ab7066..40d2eb9 100644 --- a/vorlesungen/slides/9/parrondo/deformation.tex +++ b/vorlesungen/slides/9/parrondo/deformation.tex @@ -14,22 +14,31 @@ \begin{block}{Verlustspiele} Durch Deformation (Parameter $e$ und $\varepsilon$) kann man aus $A_e$ und $B_\varepsilon$ Spiele mit negativer Gewinnerwartung machen +\uncover<2->{% \begin{align*} E(X)&=0&&\rightarrow&E(X_e)&<0\\ E(Y)&=0&&\rightarrow&E(Y_\varepsilon)&<0\\ -\end{align*} +\end{align*}} \end{block} \end{column} \begin{column}{0.48\textwidth} \begin{block}{Kombiniertes Spiel} -Die Deformation für das Spiel $C$ startet mit Erwartungswert $\frac{18}{709}$ +\uncover<3->{% +Die Deformation für das Spiel $C$ startet mit Erwartungswert $\frac{18}{709}$}% \begin{align*} -E(Z)&=\frac{18}{709} -&&\rightarrow& -E(Z_*)&>0 +\uncover<4->{E(Z)&=\frac{18}{709}>0} +&&\uncover<5->{\rightarrow& +E(Z_*)&>0} \end{align*} -Die Deformation ist immer noch ein Gewinnspiel +\uncover<6->{Wegen Stetigkeit!} +\\ +\uncover<5->{Die Deformation ist immer noch ein Gewinnspiel (für Parameter klein genug)} \end{block} +\uncover<7->{% +\begin{block}{Parrondo-Paradoxon} +Zufällig zwischen zwei Verlustspielen auswählen kann trotzdem ein +Gewinnspiel ergeben +\end{block}} \end{column} \end{columns} \end{frame} diff --git a/vorlesungen/slides/9/parrondo/erwartung.tex b/vorlesungen/slides/9/parrondo/erwartung.tex index 67bb61d..b58c37f 100644 --- a/vorlesungen/slides/9/parrondo/erwartung.tex +++ b/vorlesungen/slides/9/parrondo/erwartung.tex @@ -25,6 +25,7 @@ x_n&p_n=P(X=x_n) \] \end{center} \end{block} +\uncover<4->{% \begin{block}{Einervektoren/-matrizen} \[ U=\begin{pmatrix} @@ -36,9 +37,10 @@ U=\begin{pmatrix} \in M_{n\times m}(\Bbbk) \] -\end{block} +\end{block}} \end{column} \begin{column}{0.48\textwidth} +\uncover<2->{% \begin{block}{Erwartungswerte} \begin{align*} E(X) @@ -46,30 +48,33 @@ E(X) \sum_i x_ip_i = x^tp -= -U^t x\odot p +\uncover<5->{= +U^t x\odot p} +\hspace*{3cm} \\ -E(X^2) +\uncover<2->{E(X^2) &= -\sum_i x_i^2p_i -= -(x\odot x)^tp -= -U^t (x\odot x) \odot p +\sum_i x_i^2p_i} +\ifthenelse{\boolean{presentation}}{ +\only<6>{= +(x\odot x)^tp}}{} +\uncover<7->{= +U^t (x\odot x) \odot p} \\ -E(X^k) +\uncover<3->{E(X^k) &= -\sum_i x_i^kp_i -= -U^t x^{\odot k}\odot p +\sum_i x_i^kp_i} +\uncover<8->{= +U^t x^{\odot k}\odot p} \end{align*} +\uncover<9->{% Substitution: \begin{align*} -\sum_i &\to U^t\\ -x_i^k &\to x^{\odot k} -\end{align*} -Kann für Übergangsmatrizen von Markov-Ketten verallgemeinert werden -\end{block} +\uncover<10->{\sum_i &\to U^t}\\ +\uncover<11->{x_i^k &\to x^{\odot k}} +\end{align*}}% +\uncover<12->{Kann für Übergangsmatrizen von Markov-Ketten verallgemeinert werden} +\end{block}} \end{column} \end{columns} \end{frame} diff --git a/vorlesungen/slides/9/parrondo/kombiniert.tex b/vorlesungen/slides/9/parrondo/kombiniert.tex index 8a7fe43..5012d06 100644 --- a/vorlesungen/slides/9/parrondo/kombiniert.tex +++ b/vorlesungen/slides/9/parrondo/kombiniert.tex @@ -15,6 +15,7 @@ Ein fairer Münzwurf entscheidet, ob Spiel $A$ oder Spiel $B$ gespielt wird \end{block} +\uncover<2->{% \begin{block}{Übergangsmatrix} Münzwurf $X$ \begin{align*} @@ -24,44 +25,48 @@ P(X=\text{Kopf})\cdot A + P(X=\text{Zahl})\cdot B \\ -&= +&\uncover<3->{= \begin{pmatrix} 0&\frac{3}{8}&\frac{5}{8}\\ \frac{3}{10}& 0&\frac{3}{8}\\ \frac{7}{10}&\frac{5}{8}& 0 -\end{pmatrix} +\end{pmatrix}} \end{align*} -\end{block} +\end{block}} +\vspace{-8pt} +\uncover<4->{% \begin{block}{Gewinnerwartung im Einzelspiel} \[ p=\frac13U \Rightarrow U^t(G\odot C)p -= --\frac{1}{30} +\uncover<5->{= +-\frac{1}{30}} \] -\end{block} +\end{block}} \end{column} \begin{column}{0.48\textwidth} +\uncover<6->{% \begin{block}{Iteriertes Spiel} \[ \overline{p}=C\overline{p} \quad -\Rightarrow +\uncover<7->{\Rightarrow \quad -\overline{p}=\frac{1}{709}\begin{pmatrix}245\\180\\284\end{pmatrix} +\overline{p}=\frac{1}{709}\begin{pmatrix}245\\180\\284\end{pmatrix}} \] -\end{block} +\end{block}} +\uncover<8->{% \begin{block}{Gewinnerwartung} \begin{align*} E(Z) &= U^t (G\odot C) \overline{p} -= -\frac{18}{709} +\uncover<9->{= +\frac{18}{709}} \end{align*} -$C$ ist ein Gewinnspiel! -\end{block} +\uncover<10->{$C$ ist ein Gewinnspiel!} +\end{block}} \end{column} \end{columns} \end{frame} diff --git a/vorlesungen/slides/9/parrondo/spiela.tex b/vorlesungen/slides/9/parrondo/spiela.tex index 4b3b50c..629586f 100644 --- a/vorlesungen/slides/9/parrondo/spiela.tex +++ b/vorlesungen/slides/9/parrondo/spiela.tex @@ -16,35 +16,36 @@ Gewinn = Zufallsvariable $X$ mit Werten $\pm 1$ \begin{align*} P(X=\phantom{+}1) &= -\frac12+e +\frac12\uncover<2->{+e} \\ P(X= - 1) &= -\frac12-e +\frac12\uncover<2->{-e} \end{align*} -Bernoulli-Experiment mit $p=\frac12+e$ +Bernoulli-Experiment mit $p=\frac12\uncover<2->{+e}$ \end{block} \end{column} \begin{column}{0.48\textwidth} +\uncover<3->{ \begin{block}{Gewinnerwartung} \begin{align*} E(X) -&= -P(X=1)\cdot (1) +&=\uncover<4->{ +P(X=1)\cdot (1)} \\ &\qquad -+ -P(X=-1)\cdot (-1) +\uncover<4->{+ +P(X=-1)\cdot (-1)} \\ -&= +&\uncover<5->{= \biggl(\frac12+e\biggr)\cdot 1 + -\biggl(\frac12-e\biggr)\cdot (-1) +\biggl(\frac12-e\biggr)\cdot (-1)} \\ -&=2e +&\uncover<6->{=2e} \end{align*} -$\Rightarrow$ {\usebeamercolor[fg]{title}Verlustspiel für $e<0$} -\end{block} +\uncover<7->{$\Rightarrow$ {\usebeamercolor[fg]{title}Verlustspiel für $e<0$}} +\end{block}} \end{column} \end{columns} \end{frame} diff --git a/vorlesungen/slides/9/parrondo/spielb.tex b/vorlesungen/slides/9/parrondo/spielb.tex index 6ad512c..f65564f 100644 --- a/vorlesungen/slides/9/parrondo/spielb.tex +++ b/vorlesungen/slides/9/parrondo/spielb.tex @@ -15,6 +15,7 @@ Gewinn $\pm 1$, Wahrscheinlichkeit abhängig vom 3er-Rest des aktuellen Kapitals $K$: \begin{center} +\uncover<2->{% \begin{tikzpicture}[>=latex,thick] \coordinate (A0) at (90:2); \coordinate (A1) at (210:2); @@ -47,11 +48,12 @@ aktuellen Kapitals $K$: \node at (150:\R) {$\frac1{4}$}; \node at (270:\R) {$\frac14$}; -\end{tikzpicture} +\end{tikzpicture}} \end{center} \end{block} \end{column} \begin{column}{0.48\textwidth} +\uncover<3->{% \begin{block}{Markov-Kette $Y$} Übergangsmatrix \[ @@ -61,22 +63,37 @@ B=\begin{pmatrix} \frac{9}{10}&\frac34&0 \end{pmatrix} \] +\vspace{-10pt} + +\uncover<4->{% Gewinnmatrix: +\vspace{-2pt} \[ G=\begin{pmatrix*}[r] 0&-1&1\\ 1&0&-1\\ -1&1&0 \end{pmatrix*} -\] -\end{block} +\]} +\end{block}} +\vspace{-12pt} +\uncover<5->{% \begin{block}{Gewinnerwartung} \begin{align*} +&&&& E(Y) &= U^t(G\odot B)p +\\ +p&={\textstyle\frac13}U +&&\Rightarrow& +E(Y)&={\textstyle\frac1{15}} +\\ +\overline{p}&={\tiny\frac{1}{13}\begin{pmatrix}5\\2\\6\end{pmatrix}} +&&\Rightarrow& +E(Y)&=0 \end{align*} -\end{block} +\end{block}} \end{column} \end{columns} \end{frame} diff --git a/vorlesungen/slides/9/parrondo/spielbmod.tex b/vorlesungen/slides/9/parrondo/spielbmod.tex index ee1d12d..66d39bc 100644 --- a/vorlesungen/slides/9/parrondo/spielbmod.tex +++ b/vorlesungen/slides/9/parrondo/spielbmod.tex @@ -7,7 +7,7 @@ \begin{frame}[t] \setlength{\abovedisplayskip}{5pt} \setlength{\belowdisplayskip}{5pt} -\frametitle{Modifiziertes Spiel $B$} +\frametitle{Modifiziertes Spiel $\tilde{B}$} \vspace{-20pt} \begin{columns}[t,onlytextwidth] \begin{column}{0.48\textwidth} @@ -39,13 +39,13 @@ aktuellen Kapitals $K$: \def\R{1.9} \def\r{0.7} -\node at (30:{0.9*\r}) {\tiny $\frac{9}{10}+\varepsilon$}; -\node at (150:{0.9*\r}) {\tiny $\frac1{10}-\varepsilon$}; -\node at (270:\r) {$\frac34-\varepsilon$}; +\node at (30:{0.9*\r}) {\tiny $\frac{9}{10}\uncover<2->{+\varepsilon}$}; +\node at (150:{0.9*\r}) {\tiny $\frac1{10}\uncover<2->{-\varepsilon}$}; +\node at (270:\r) {$\frac34\uncover<2->{-\varepsilon}$}; -\node at (30:{1.1*\R}) {$\frac{3}{4}-\varepsilon$}; -\node at (150:{1.1*\R}) {$\frac1{4}+\varepsilon$}; -\node at (270:\R) {$\frac14+\varepsilon$}; +\node at (30:{1.1*\R}) {$\frac{3}{4}\uncover<2->{-\varepsilon}$}; +\node at (150:{1.1*\R}) {$\frac1{4}\uncover<2->{+\varepsilon}$}; +\node at (270:\R) {$\frac14\uncover<2->{+\varepsilon}$}; \end{tikzpicture} \end{center} @@ -56,14 +56,17 @@ aktuellen Kapitals $K$: Übergangsmatrix \[ \tilde{B}= -B+\varepsilon F -= +B\uncover<2->{+\varepsilon F} +\uncover<3->{= B+\varepsilon\begin{pmatrix*}[r] 0&1&-1\\ -1&0&1\\ 1&-1&0 -\end{pmatrix*} +\end{pmatrix*}} \] +\vspace{-12pt} + +\uncover<4->{% Gewinnmatrix: \[ G=\begin{pmatrix*}[r] @@ -71,20 +74,29 @@ G=\begin{pmatrix*}[r] 1&0&-1\\ -1&1&0 \end{pmatrix*} -\] +\]} \end{block} +\vspace{-12pt} +\uncover<5->{% \begin{block}{Gewinnerwartung} \begin{align*} -E(\tilde{Y}) +\uncover<6->{E(\tilde{Y}) &= -U^t(G\odot \tilde{B})p +U^t(G\odot \tilde{B})p} \\ +&\uncover<7->{= +E(Y) + \varepsilon U^t(G\odot F)p} +\uncover<8->{= +{\textstyle\frac1{15}}+2\varepsilon} +\\ +\uncover<9->{ +\text{rep.} &= -E(Y) + \varepsilon U^t(G\odot F)p -= -\frac1{15}+2\varepsilon +-{\textstyle\frac{294}{169}}\varepsilon+O(\varepsilon^2) +\quad\text{Verlustspiel} +} \end{align*} -\end{block} +\end{block}} \end{column} \end{columns} \end{frame} diff --git a/vorlesungen/slides/9/parrondo/uebersicht.tex b/vorlesungen/slides/9/parrondo/uebersicht.tex new file mode 100644 index 0000000..2f3597a --- /dev/null +++ b/vorlesungen/slides/9/parrondo/uebersicht.tex @@ -0,0 +1,17 @@ +% +% uebersicht.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame} +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Parrondo-Paradoxon} +\begin{center} +\Large +Zufällige +Wahl zwischen zwei Verlustspielen = Gewinnspiel? +\end{center} +\end{frame} +\egroup |