diff options
author | Andreas Müller <andreas.mueller@ost.ch> | 2021-02-22 11:19:24 +0100 |
---|---|---|
committer | Andreas Müller <andreas.mueller@ost.ch> | 2021-02-22 11:19:24 +0100 |
commit | 95c9a63dbb58815be30d393a0a1891b0bddc8ae8 (patch) | |
tree | 036a15470ab973675009a7582e06d401f2e0d7e7 /vorlesungen | |
parent | typo (diff) | |
download | SeminarMatrizen-95c9a63dbb58815be30d393a0a1891b0bddc8ae8.tar.gz SeminarMatrizen-95c9a63dbb58815be30d393a0a1891b0bddc8ae8.zip |
phases
Diffstat (limited to '')
-rw-r--r-- | vorlesungen/slides/1/algebrastruktur.tex | 102 | ||||
-rw-r--r-- | vorlesungen/slides/1/dreieck.tex | 1 | ||||
-rw-r--r-- | vorlesungen/slides/1/speziell.tex | 6 |
3 files changed, 66 insertions, 43 deletions
diff --git a/vorlesungen/slides/1/algebrastruktur.tex b/vorlesungen/slides/1/algebrastruktur.tex index 9647c04..d7794a3 100644 --- a/vorlesungen/slides/1/algebrastruktur.tex +++ b/vorlesungen/slides/1/algebrastruktur.tex @@ -13,34 +13,43 @@ \begin{tikzpicture}[>=latex,thick] \pgfmathparse{atan(7/4)} \xdef\a{\pgfmathresult} -\fill[color=red!40,opacity=0.5] - ({-4-2.5},{2+1.0}) - -- - ({-2.5},{-3-1.0}) - -- - ({2.5},{-3-1.0}) - -- - ({-4+2.5},{2+1.0}) - -- cycle; -\fill[color=blue!40,opacity=0.5] - ({4-2.5},{2+1.0}) - -- - ({-2.5},{-3-1.0}) - -- - ({2.5},{-3-1.0}) - -- - ({4+2.5},{2+1.0}) - -- cycle; -\fill[color=darkgreen!40,opacity=0.5] - ({-4-2.5},{2+1.0}) - -- - ({-4-2.5+2*(4/7)},{2-1}) - -- - ({+4+2.5-2*(4/7)},{2-1}) - -- - ({+4+2.5},{2+1}) - -- - cycle; +\uncover<2->{ + \fill[color=red!40,opacity=0.5] + ({-4-2.5},{2+1.0}) + -- + ({-2.5},{-3-1.0}) + -- + ({2.5},{-3-1.0}) + -- + ({-4+2.5},{2+1.0}) + -- cycle; +} + +\uncover<4->{ + \fill[color=blue!40,opacity=0.5] + ({4-2.5},{2+1.0}) + -- + ({-2.5},{-3-1.0}) + -- + ({2.5},{-3-1.0}) + -- + ({4+2.5},{2+1.0}) + -- cycle; +} + +\uncover<6->{ + \fill[color=darkgreen!40,opacity=0.5] + ({-4-2.5},{2+1.0}) + -- + ({-4-2.5+2*(4/7)},{2-1}) + -- + ({+4+2.5-2*(4/7)},{2-1}) + -- + ({+4+2.5},{2+1}) + -- + cycle; +} + \node at ({-3-0.5},2) {Skalarmultiplikation}; \node at (3.5,2.2) {Multiplikation}; @@ -49,22 +58,33 @@ \node at (0,-2.8) {Addition}; \node at (0,-3.2) {\tiny Gruppe}; -\node[color=blue] at (4.8,-0.5) [rotate=\a] {Ring\strut}; -\node[color=red] at (-4.8,-0.5) [rotate=-\a] {Vektorraum\strut}; +\uncover<4->{ + \node[color=blue] at (4.8,-0.5) [rotate=\a] {Ring\strut}; +} + +\uncover<2->{ + \node[color=red] at (-4.8,-0.5) [rotate=-\a] {Vektorraum\strut}; +} -\node[color=darkgreen] at (0,2.6) {$(\lambda a)b=\lambda(ab)$}; +\uncover<6->{ + \node[color=darkgreen] at (0,2.6) {$(\lambda a)b=\lambda(ab)$}; +} -\node[color=red] at (-2.5,-0.5) {$\displaystyle -\begin{aligned} -\lambda(a+b)&=\lambda a + \lambda b\\ -(\lambda+\mu)a&=\lambda a +\mu a -\end{aligned}$}; +\uncover<3->{ + \node[color=red] at (-2.5,-0.5) {$\displaystyle + \begin{aligned} + \lambda(a+b)&=\lambda a + \lambda b\\ + (\lambda+\mu)a&=\lambda a +\mu a + \end{aligned}$}; +} -\node[color=blue] at (2.5,-0.5) {$\displaystyle -\begin{aligned} -a(b+c)&=ab+ac\\ -(a+b)c&=ac+bc -\end{aligned}$}; +\uncover<5->{ + \node[color=blue] at (2.5,-0.5) {$\displaystyle + \begin{aligned} + a(b+c)&=ab+ac\\ + (a+b)c&=ac+bc + \end{aligned}$}; +} \end{tikzpicture} \end{center} diff --git a/vorlesungen/slides/1/dreieck.tex b/vorlesungen/slides/1/dreieck.tex index f38f78d..3797e4b 100644 --- a/vorlesungen/slides/1/dreieck.tex +++ b/vorlesungen/slides/1/dreieck.tex @@ -5,6 +5,7 @@ % \begin{frame}[t] \frametitle{Dreiecksmatrizen} +\vspace{-10pt} \begin{columns}[t,onlytextwidth] \begin{column}{0.31\textwidth} \begin{block}{Dreiecksmatrix} diff --git a/vorlesungen/slides/1/speziell.tex b/vorlesungen/slides/1/speziell.tex index 83b3735..5b93da6 100644 --- a/vorlesungen/slides/1/speziell.tex +++ b/vorlesungen/slides/1/speziell.tex @@ -23,6 +23,7 @@ AI=IA=A \end{block} \end{column} \begin{column}{0.58\textwidth} +\uncover<2->{% \begin{block}{Diagonalmatrix} \[ \operatorname{diag}(\lambda_1,\lambda_2,\dots,\lambda_n) @@ -34,11 +35,12 @@ AI=IA=A 0&0&\dots&\lambda_n \end{pmatrix} \] -\end{block} +\end{block}} +\uncover<3->{% \begin{block}{Hadamard-Algebra} Die Algebra der Diagonalmatrizen ist die Hadamard-Algebra (siehe später) -\end{block} +\end{block}} \end{column} \end{columns} \end{frame} |