aboutsummaryrefslogtreecommitdiffstats
path: root/vorlesungen
diff options
context:
space:
mode:
authorNao Pross <np@0hm.ch>2021-06-20 19:11:28 +0200
committerNao Pross <np@0hm.ch>2021-06-20 19:11:28 +0200
commit0a850778d935434519f3b3a2a522ee37dcef073b (patch)
tree88476888a1f0a47e5813595beefe50a3f525343c /vorlesungen
parentRestructure (diff)
parentfix paper/ifs/references.bib (diff)
downloadSeminarMatrizen-0a850778d935434519f3b3a2a522ee37dcef073b.tar.gz
SeminarMatrizen-0a850778d935434519f3b3a2a522ee37dcef073b.zip
Merge remote-tracking branch 'upstream/master'
Diffstat (limited to 'vorlesungen')
-rw-r--r--vorlesungen/13_msegraphwavelets/Makefile33
-rw-r--r--vorlesungen/13_msegraphwavelets/MathSemMSE-13-graphwavelets.tex14
-rw-r--r--vorlesungen/13_msegraphwavelets/common.tex16
-rw-r--r--vorlesungen/13_msegraphwavelets/graphwavelets-handout.tex11
-rw-r--r--vorlesungen/13_msegraphwavelets/slides.tex44
-rw-r--r--vorlesungen/14_msehilbertraum/Makefile33
-rw-r--r--vorlesungen/14_msehilbertraum/MathSemMSE-14-hilbertraum.tex14
-rw-r--r--vorlesungen/14_msehilbertraum/common.tex16
-rw-r--r--vorlesungen/14_msehilbertraum/hilbertraum-handout.tex11
-rw-r--r--vorlesungen/14_msehilbertraum/slides.tex31
-rw-r--r--vorlesungen/99_vortraege/Makefile10
-rw-r--r--vorlesungen/99_vortraege/MathSem-99-vortraege.tex13
-rw-r--r--vorlesungen/slides/2/Makefile.inc14
-rw-r--r--vorlesungen/slides/2/chapter.tex14
-rw-r--r--vorlesungen/slides/2/hilbertraum/adjungiert.tex83
-rw-r--r--vorlesungen/slides/2/hilbertraum/basis.tex65
-rw-r--r--vorlesungen/slides/2/hilbertraum/definition.tex63
-rw-r--r--vorlesungen/slides/2/hilbertraum/energie.tex67
-rw-r--r--vorlesungen/slides/2/hilbertraum/l2.tex61
-rw-r--r--vorlesungen/slides/2/hilbertraum/l2beispiel.tex82
-rw-r--r--vorlesungen/slides/2/hilbertraum/laplace.tex66
-rw-r--r--vorlesungen/slides/2/hilbertraum/plancherel.tex102
-rw-r--r--vorlesungen/slides/2/hilbertraum/qm.tex90
-rw-r--r--vorlesungen/slides/2/hilbertraum/riesz.tex76
-rw-r--r--vorlesungen/slides/2/hilbertraum/rieszbeispiel.tex107
-rw-r--r--vorlesungen/slides/2/hilbertraum/sobolev.tex51
-rw-r--r--vorlesungen/slides/2/hilbertraum/spektral.tex91
-rw-r--r--vorlesungen/slides/2/hilbertraum/sturm.tex58
-rw-r--r--vorlesungen/slides/8/Makefile.inc13
-rw-r--r--vorlesungen/slides/8/chapter.tex13
-rw-r--r--vorlesungen/slides/8/wavelets/Makefile8
-rw-r--r--vorlesungen/slides/8/wavelets/beispiel.tex44
-rw-r--r--vorlesungen/slides/8/wavelets/dilatation.tex62
-rw-r--r--vorlesungen/slides/8/wavelets/dilbei.tex46
-rw-r--r--vorlesungen/slides/8/wavelets/ev.m97
-rw-r--r--vorlesungen/slides/8/wavelets/fourier.tex86
-rw-r--r--vorlesungen/slides/8/wavelets/frame.tex66
-rw-r--r--vorlesungen/slides/8/wavelets/framekonstanten.tex71
-rw-r--r--vorlesungen/slides/8/wavelets/frequenzlokalisierung.tex78
-rw-r--r--vorlesungen/slides/8/wavelets/funktionen.tex78
-rw-r--r--vorlesungen/slides/8/wavelets/gundh.tex85
-rw-r--r--vorlesungen/slides/8/wavelets/laplacebasis.tex62
-rw-r--r--vorlesungen/slides/8/wavelets/lokalisierungsvergleich.tex46
-rw-r--r--vorlesungen/slides/8/wavelets/matrixdilatation.tex39
-rw-r--r--vorlesungen/slides/8/wavelets/vektoren.tex200
45 files changed, 2429 insertions, 1 deletions
diff --git a/vorlesungen/13_msegraphwavelets/Makefile b/vorlesungen/13_msegraphwavelets/Makefile
new file mode 100644
index 0000000..6dba66c
--- /dev/null
+++ b/vorlesungen/13_msegraphwavelets/Makefile
@@ -0,0 +1,33 @@
+#
+# Makefile -- graphwavelets
+#
+# (c) 2017 Prof Dr Andreas Müller, Hochschule Rapperswil
+#
+all: graphwavelets-handout.pdf MathSemMSE-13-graphwavelets.pdf
+
+include ../slides/Makefile.inc
+
+SOURCES = common.tex slides.tex $(slides)
+
+MathSemMSE-13-graphwavelets.pdf: MathSemMSE-13-graphwavelets.tex $(SOURCES)
+ pdflatex MathSemMSE-13-graphwavelets.tex
+
+graphwavelets-handout.pdf: graphwavelets-handout.tex $(SOURCES)
+ pdflatex graphwavelets-handout.tex
+
+thumbnail: thumbnail.jpg # fix1.jpg
+
+thumbnail.pdf: MathSemMSE-13-graphwavelets.pdf
+ pdfjam --outfile thumbnail.pdf --papersize '{16cm,9cm}' \
+ MathSemMSE-13-graphwavelets.pdf 1
+thumbnail.jpg: thumbnail.pdf
+ convert -density 300 thumbnail.pdf \
+ -resize 1920x1080 -units PixelsPerInch thumbnail.jpg
+
+fix1.pdf: MathSemMSE-13-graphwavelets.pdf
+ pdfjam --outfile fix1.pdf --papersize '{16cm,9cm}' \
+ MathSemMSE-13-graphwavelets.pdf 1
+fix1.jpg: fix1.pdf
+ convert -density 300 fix1.pdf \
+ -resize 1920x1080 -units PixelsPerInch fix1.jpg
+
diff --git a/vorlesungen/13_msegraphwavelets/MathSemMSE-13-graphwavelets.tex b/vorlesungen/13_msegraphwavelets/MathSemMSE-13-graphwavelets.tex
new file mode 100644
index 0000000..112d952
--- /dev/null
+++ b/vorlesungen/13_msegraphwavelets/MathSemMSE-13-graphwavelets.tex
@@ -0,0 +1,14 @@
+%
+% MathSem-13-msegraphwavelets.tex -- Präsentation
+%
+% (c) 2017 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\documentclass[aspectratio=169]{beamer}
+\input{common.tex}
+\setboolean{presentation}{true}
+\begin{document}
+\begin{frame}
+\titlepage
+\end{frame}
+\input{slides.tex}
+\end{document}
diff --git a/vorlesungen/13_msegraphwavelets/common.tex b/vorlesungen/13_msegraphwavelets/common.tex
new file mode 100644
index 0000000..b9799f0
--- /dev/null
+++ b/vorlesungen/13_msegraphwavelets/common.tex
@@ -0,0 +1,16 @@
+%
+% common.tex -- gemeinsame definition
+%
+% (c) 2017 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\input{../common/packages.tex}
+\input{../common/common.tex}
+\mode<beamer>{%
+\usetheme[hideothersubsections,hidetitle]{Hannover}
+}
+\beamertemplatenavigationsymbolsempty
+\title[SGWT]{Wavelets auf Graphen}
+\author[A.~Müller]{Prof. Dr. Andreas Müller}
+\date[]{}
+\newboolean{presentation}
+
diff --git a/vorlesungen/13_msegraphwavelets/graphwavelets-handout.tex b/vorlesungen/13_msegraphwavelets/graphwavelets-handout.tex
new file mode 100644
index 0000000..98789e5
--- /dev/null
+++ b/vorlesungen/13_msegraphwavelets/graphwavelets-handout.tex
@@ -0,0 +1,11 @@
+%
+% msegraphwavelets-handout.tex -- Handout XXX
+%
+% (c) 2017 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\documentclass[handout,aspectratio=169]{beamer}
+\input{common.tex}
+\setboolean{presentation}{false}
+\begin{document}
+\input{slides.tex}
+\end{document}
diff --git a/vorlesungen/13_msegraphwavelets/slides.tex b/vorlesungen/13_msegraphwavelets/slides.tex
new file mode 100644
index 0000000..3fd38f2
--- /dev/null
+++ b/vorlesungen/13_msegraphwavelets/slides.tex
@@ -0,0 +1,44 @@
+%
+% slides.tex -- XXX
+%
+% (c) 2017 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+
+% Funktionen auf einem Graphen
+\folie{8/wavelets/funktionen.tex}
+
+% Laplace-Basis auf dem Graphen
+\folie{8/wavelets/laplacebasis.tex}
+
+% Fourier-Transformation auf einem Graphen
+\folie{8/wavelets/fourier.tex}
+
+% Lokalisierung in Standardbasis und Fourier-Basis
+\folie{8/wavelets/lokalisierungsvergleich.tex}
+
+% Lokalisierung im Frequenzraum
+\folie{8/wavelets/frequenzlokalisierung.tex}
+
+% Dilatation im Frequenzraum
+\folie{8/wavelets/dilatation.tex}
+
+% Dilatation in Matrixform
+\folie{8/wavelets/matrixdilatation.tex}
+
+% Funktionen g und h
+\folie{8/wavelets/gundh.tex}
+\ifthenelse{\boolean{presentation}}{
+\folie{8/wavelets/dilbei.tex}
+}{}
+
+% Wavelet Frame
+\folie{8/wavelets/frame.tex}
+
+% Framekonstante
+\folie{8/wavelets/framekonstanten.tex}
+
+% Kugel-Beispiel
+\ifthenelse{\boolean{presentation}}{
+\folie{8/wavelets/beispiel.tex}
+}{}
+
diff --git a/vorlesungen/14_msehilbertraum/Makefile b/vorlesungen/14_msehilbertraum/Makefile
new file mode 100644
index 0000000..e5de69c
--- /dev/null
+++ b/vorlesungen/14_msehilbertraum/Makefile
@@ -0,0 +1,33 @@
+#
+# Makefile -- hilbertraum
+#
+# (c) 2017 Prof Dr Andreas Müller, Hochschule Rapperswil
+#
+all: hilbertraum-handout.pdf MathSemMSE-14-hilbertraum.pdf
+
+include ../slides/Makefile.inc
+
+SOURCES = common.tex slides.tex $(slides)
+
+MathSemMSE-14-hilbertraum.pdf: MathSemMSE-14-hilbertraum.tex $(SOURCES)
+ pdflatex MathSemMSE-14-hilbertraum.tex
+
+hilbertraum-handout.pdf: hilbertraum-handout.tex $(SOURCES)
+ pdflatex hilbertraum-handout.tex
+
+thumbnail: thumbnail.jpg # fix1.jpg
+
+thumbnail.pdf: MathSemMSE-14-hilbertraum.pdf
+ pdfjam --outfile thumbnail.pdf --papersize '{16cm,9cm}' \
+ MathSemMSE-14-hilbertraum.pdf 1
+thumbnail.jpg: thumbnail.pdf
+ convert -density 300 thumbnail.pdf \
+ -resize 1920x1080 -units PixelsPerInch thumbnail.jpg
+
+fix1.pdf: MathSemMSE-14-hilbertraum.pdf
+ pdfjam --outfile fix1.pdf --papersize '{16cm,9cm}' \
+ MathSemMSE-14-hilbertraum.pdf 1
+fix1.jpg: fix1.pdf
+ convert -density 300 fix1.pdf \
+ -resize 1920x1080 -units PixelsPerInch fix1.jpg
+
diff --git a/vorlesungen/14_msehilbertraum/MathSemMSE-14-hilbertraum.tex b/vorlesungen/14_msehilbertraum/MathSemMSE-14-hilbertraum.tex
new file mode 100644
index 0000000..b06500c
--- /dev/null
+++ b/vorlesungen/14_msehilbertraum/MathSemMSE-14-hilbertraum.tex
@@ -0,0 +1,14 @@
+%
+% MathSem-14-msehilbertraum.tex -- Präsentation
+%
+% (c) 2017 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\documentclass[aspectratio=169]{beamer}
+\input{common.tex}
+\setboolean{presentation}{true}
+\begin{document}
+\begin{frame}
+\titlepage
+\end{frame}
+\input{slides.tex}
+\end{document}
diff --git a/vorlesungen/14_msehilbertraum/common.tex b/vorlesungen/14_msehilbertraum/common.tex
new file mode 100644
index 0000000..a9089bf
--- /dev/null
+++ b/vorlesungen/14_msehilbertraum/common.tex
@@ -0,0 +1,16 @@
+%
+% common.tex -- gemeinsame definition
+%
+% (c) 2017 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\input{../common/packages.tex}
+\input{../common/common.tex}
+\mode<beamer>{%
+\usetheme[hideothersubsections,hidetitle]{Hannover}
+}
+\beamertemplatenavigationsymbolsempty
+\title[Hilbertraum]{Hilbertraum}
+\author[A.~Müller]{Prof.~Dr.~Andreas Müller}
+\date[]{}
+\newboolean{presentation}
+
diff --git a/vorlesungen/14_msehilbertraum/hilbertraum-handout.tex b/vorlesungen/14_msehilbertraum/hilbertraum-handout.tex
new file mode 100644
index 0000000..3dc7abf
--- /dev/null
+++ b/vorlesungen/14_msehilbertraum/hilbertraum-handout.tex
@@ -0,0 +1,11 @@
+%
+% msehilbertraum-handout.tex -- Handout XXX
+%
+% (c) 2017 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+\documentclass[handout,aspectratio=169]{beamer}
+\input{common.tex}
+\setboolean{presentation}{false}
+\begin{document}
+\input{slides.tex}
+\end{document}
diff --git a/vorlesungen/14_msehilbertraum/slides.tex b/vorlesungen/14_msehilbertraum/slides.tex
new file mode 100644
index 0000000..19925db
--- /dev/null
+++ b/vorlesungen/14_msehilbertraum/slides.tex
@@ -0,0 +1,31 @@
+%
+% slides.tex -- XXX
+%
+% (c) 2017 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+
+\section{Hilbertraum}
+\folie{2/hilbertraum/definition.tex}
+\folie{2/hilbertraum/l2beispiel.tex}
+\folie{2/hilbertraum/basis.tex}
+\folie{2/hilbertraum/plancherel.tex}
+
+\section{Beispiele}
+\folie{2/hilbertraum/l2.tex}
+
+\section{Riesz-Darstellungssatz}
+\folie{2/hilbertraum/riesz.tex}
+\folie{2/hilbertraum/rieszbeispiel.tex}
+
+\section{$A^*$}
+\folie{2/hilbertraum/adjungiert.tex}
+\folie{2/hilbertraum/spektral.tex}
+
+\section{PDE und Hilbertraum}
+\folie{2/hilbertraum/sturm.tex}
+\folie{2/hilbertraum/laplace.tex}
+\folie{2/hilbertraum/qm.tex}
+\folie{2/hilbertraum/energie.tex}
+\folie{2/hilbertraum/sobolev.tex}
+
+
diff --git a/vorlesungen/99_vortraege/Makefile b/vorlesungen/99_vortraege/Makefile
index 8a5751c..69ec665 100644
--- a/vorlesungen/99_vortraege/Makefile
+++ b/vorlesungen/99_vortraege/Makefile
@@ -15,7 +15,8 @@ MathSem-99-vortraege.pdf: MathSem-99-vortraege.tex $(SOURCES)
vortraege-handout.pdf: vortraege-handout.tex $(SOURCES)
pdflatex vortraege-handout.tex
-thumbnail: thumbnail1.jpg thumbnail2.jpg thumbnail3.jpg thumbnail4.jpg
+thumbnail: thumbnail1.jpg thumbnail2.jpg thumbnail3.jpg thumbnail4.jpg \
+ thumbnail5.jpg
thumbnail1.pdf: MathSem-99-vortraege.pdf
pdfjam --outfile thumbnail1.pdf --papersize '{16cm,9cm}' \
@@ -45,6 +46,13 @@ thumbnail4.jpg: thumbnail4.pdf
convert -density 300 thumbnail4.pdf \
-resize 1920x1080 -units PixelsPerInch thumbnail4.jpg
+thumbnail5.pdf: MathSem-99-vortraege.pdf
+ pdfjam --outfile thumbnail5.pdf --papersize '{16cm,9cm}' \
+ MathSem-99-vortraege.pdf 5
+thumbnail5.jpg: thumbnail5.pdf
+ convert -density 300 thumbnail5.pdf \
+ -resize 1920x1080 -units PixelsPerInch thumbnail5.jpg
+
fix1.pdf: MathSem-99-vortraege.pdf
pdfjam --outfile fix1.pdf --papersize '{16cm,9cm}' \
MathSem-99-vortraege.pdf 1
diff --git a/vorlesungen/99_vortraege/MathSem-99-vortraege.tex b/vorlesungen/99_vortraege/MathSem-99-vortraege.tex
index c962e90..ddcfcf8 100644
--- a/vorlesungen/99_vortraege/MathSem-99-vortraege.tex
+++ b/vorlesungen/99_vortraege/MathSem-99-vortraege.tex
@@ -61,5 +61,18 @@ Fabio Viecelli, Lukas Zogg: Erdbebenmessung
\end{center}
\end{frame}
+\title[Vorträge]{31. Mai: Vorträge}
+\begin{frame}
+\titlepage
+\vspace{-2cm}
+\begin{center}
+Marc Kühne: Munkres-Algorithmus
+\phantom{blubb} \\
+\phantom{blubb} \\
+\phantom{blubb} \\
+Michael Schmid: Schnelle Matrixmultiplikation
+\end{center}
+\end{frame}
+
\input{slides.tex}
\end{document}
diff --git a/vorlesungen/slides/2/Makefile.inc b/vorlesungen/slides/2/Makefile.inc
index c857fec..cbd4dfe 100644
--- a/vorlesungen/slides/2/Makefile.inc
+++ b/vorlesungen/slides/2/Makefile.inc
@@ -17,5 +17,19 @@ chapter2 = \
../slides/2/frobeniusanwendung.tex \
../slides/2/quotient.tex \
../slides/2/quotientv.tex \
+ ../slides/2/hilbertraum/definition.tex \
+ ../slides/2/hilbertraum/l2beispiel.tex \
+ ../slides/2/hilbertraum/basis.tex \
+ ../slides/2/hilbertraum/plancherel.tex \
+ ../slides/2/hilbertraum/l2.tex \
+ ../slides/2/hilbertraum/riesz.tex \
+ ../slides/2/hilbertraum/rieszbeispiel.tex \
+ ../slides/2/hilbertraum/adjungiert.tex \
+ ../slides/2/hilbertraum/spektral.tex \
+ ../slides/2/hilbertraum/sturm.tex \
+ ../slides/2/hilbertraum/laplace.tex \
+ ../slides/2/hilbertraum/qm.tex \
+ ../slides/2/hilbertraum/energie.tex \
+ ../slides/2/hilbertraum/sobolev.tex \
../slides/2/chapter.tex
diff --git a/vorlesungen/slides/2/chapter.tex b/vorlesungen/slides/2/chapter.tex
index 49e656a..d3714c3 100644
--- a/vorlesungen/slides/2/chapter.tex
+++ b/vorlesungen/slides/2/chapter.tex
@@ -15,3 +15,17 @@
\folie{2/frobeniusanwendung.tex}
\folie{2/quotient.tex}
\folie{2/quotientv.tex}
+\folie{2/hilbertraum/definition.tex}
+\folie{2/hilbertraum/l2beispiel.tex}
+\folie{2/hilbertraum/basis.tex}
+\folie{2/hilbertraum/plancherel.tex}
+\folie{2/hilbertraum/l2.tex}
+\folie{2/hilbertraum/riesz.tex}
+\folie{2/hilbertraum/rieszbeispiel.tex}
+\folie{2/hilbertraum/adjungiert.tex}
+\folie{2/hilbertraum/spektral.tex}
+\folie{2/hilbertraum/sturm.tex}
+\folie{2/hilbertraum/laplace.tex}
+\folie{2/hilbertraum/qm.tex}
+\folie{2/hilbertraum/energie.tex}
+\folie{2/hilbertraum/sobolev.tex}
diff --git a/vorlesungen/slides/2/hilbertraum/adjungiert.tex b/vorlesungen/slides/2/hilbertraum/adjungiert.tex
new file mode 100644
index 0000000..da41576
--- /dev/null
+++ b/vorlesungen/slides/2/hilbertraum/adjungiert.tex
@@ -0,0 +1,83 @@
+%
+% adjungiert.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Adjungierter Operator}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Definition}
+\begin{itemize}
+\item<2->
+$A\colon H\to L$ lineare Abbildung zwischen Hilberträumen, $y\in L$
+\item<3->
+\[
+H\to\mathbb{C}
+:
+x\mapsto \langle y, Ax\rangle_L
+\]
+ist eine lineare Abbildung $H\to\mathbb{C}$
+\item<4->
+Nach dem Darstellungssatz gibt es $v\in H$ mit
+\[
+\langle y,Ax\rangle_L = \langle v,x\rangle_H
+\quad
+\forall x\in H
+\]
+\end{itemize}
+\uncover<5->{%
+Die Abbildung
+\[
+L\to H
+:
+y\mapsto v =: A^*y
+\]
+heisst {\em adjungierte Abbildung}}
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<6->{%
+\begin{block}{Endlichdimensional (Matrizen)}
+\[
+A^* = \overline{A}^t
+\]
+\end{block}}
+\vspace{-8pt}
+\uncover<7->{%
+\begin{block}{Selbstabbildungen}
+Für Operatoren $A\colon H\to H$ ist $A^*\colon H\to H$
+\[
+\langle x,Ay\rangle
+=
+\langle A^*x, y\rangle
+\quad
+\forall x,y\in H
+\]
+\end{block}}
+\vspace{-8pt}
+\uncover<9->{%
+\begin{block}{Selbstadjungierte Operatoren}
+\[
+A=A^*
+\uncover<10->{\;\Leftrightarrow\;
+\langle x,Ay \rangle
+=
+\langle A^*x,y \rangle}
+\uncover<11->{=
+\langle Ax,y \rangle}
+\]
+\uncover<12->{Matrizen:
+\begin{itemize}
+\item<13-> hermitesch
+\item<14-> für reelle Hilberträume: symmetrisch
+\end{itemize}}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/2/hilbertraum/basis.tex b/vorlesungen/slides/2/hilbertraum/basis.tex
new file mode 100644
index 0000000..022fa07
--- /dev/null
+++ b/vorlesungen/slides/2/hilbertraum/basis.tex
@@ -0,0 +1,65 @@
+%
+% basis.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Hilbert-Basis}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Definition}
+Eine Menge $\mathcal{B}=\{b_k|k>0\}$ ist eine Hilbertbasis, wenn
+\begin{itemize}
+\item<2-> $\mathcal{B}$ ist orthonormiert: $\langle b_k,b_l\rangle=\delta_{kl}$
+\item<3-> Der Unterraum $\langle b_k|k>0\rangle\subset H$ ist
+dicht:
+Jeder Vektor von $H$ kann beliebig genau durch Linearkombinationen von $b_k$
+approximiert werden.
+\end{itemize}
+\uncover<4->{%
+Ein Hilbertraum mit einer Hilbertbasis heisst {\em separabel}}
+\end{block}
+\uncover<5->{%
+\begin{block}{Endlichdimensional}
+Der Algorithmus bricht nach endlich vielen Schritten ab.
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<6->{%
+\begin{block}{Konstruktion}
+Iterativ: $\mathcal{B}_0=\emptyset$
+\begin{enumerate}
+\item<7-> $V_k = \langle \mathcal{B}_k \rangle$
+\item<8-> Wenn $V_k\ne H$, wähle einen Vektor
+\begin{align*}
+x\in V_k^{\perp}
+&=
+\{
+x\in H\;|\; x\perp V_k
+\}
+\\
+&=
+\{x\in H\;|\;
+x\perp y\;\forall y\in V_k
+\}
+\end{align*}
+\item<9-> $b_{k+1} = x/\|x\|$
+\[
+\mathcal{B}_{k+1} = \mathcal{B}_k\cup \{b_{k+1}\}
+\]
+\end{enumerate}
+\uncover<10->{%
+Wenn $H$ separabel ist, dann ist
+\[
+\mathcal{B} = \bigcup_{k} \mathcal{B}_k
+\]
+eine Hilbertbasis für $H$}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/2/hilbertraum/definition.tex b/vorlesungen/slides/2/hilbertraum/definition.tex
new file mode 100644
index 0000000..d101637
--- /dev/null
+++ b/vorlesungen/slides/2/hilbertraum/definition.tex
@@ -0,0 +1,63 @@
+%
+% definition.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Hilbertraum --- Definition}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{$\mathbb{C}$-Hilbertraum $H$}
+\begin{enumerate}
+\item<2-> $\mathbb{C}$-Vektorraum, muss nicht endlichdimensional sein
+\item<3-> Sesquilineares Skalarprodukt
+\[
+\langle \cdot,\cdot\rangle
+\colon H \to \mathbb{C}: (x,y) \mapsto \langle x,y\rangle
+\]
+Dazugehörige Norm:
+\[
+\|x\| = \sqrt{\langle x,x\rangle}
+\]
+\item<4-> Vollständigkeit: jede Cauchy-Folge konvergiert
+\end{enumerate}
+\uncover<5->{%
+Ohne Vollständigkeit: {\em Prähilbertraum}}
+\end{block}
+\uncover<6->{%
+\begin{block}{$\mathbb{R}$-Hilbertraum}
+Vollständiger $\mathbb{R}$-Vektorraum mit bilinearem Skalarprodukt
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<7->{%
+\begin{block}{Vollständigkeit}
+\begin{itemize}
+\item<8-> $(x_n)_{n\in\mathbb{N}}$ ist eine Cauchy-Folge:
+Für alle $\varepsilon>0$ gibt es $N>0$ derart, dass
+\[
+\| x_n-x_m\| < \varepsilon\quad\forall n,m>N
+\]
+\item<9-> Grenzwert existiert: $\exists x\in H$ derart, dass es für alle
+$\varepsilon >0$ ein $N>0$ gibt derart, dass
+\[
+\|x_n-x\|<\varepsilon\quad\forall n>N
+\]
+\end{itemize}
+\end{block}}
+\uncover<10->{%
+\begin{block}{Cauchy-Schwarz-Ungleichung}
+\[
+|\langle x,y\rangle|
+\le \|x\| \cdot \|y\|
+\]
+Gleichheit für linear abhängige $x$ und $y$
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/2/hilbertraum/energie.tex b/vorlesungen/slides/2/hilbertraum/energie.tex
new file mode 100644
index 0000000..202a7c5
--- /dev/null
+++ b/vorlesungen/slides/2/hilbertraum/energie.tex
@@ -0,0 +1,67 @@
+%
+% energie.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Energie --- Zeitentwicklung --- Schrödinger}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.30\textwidth}
+\uncover<2->{%
+\begin{block}{Totale Energie}
+Hamilton-Funktion
+\begin{align*}
+H
+&=
+\frac12mv^2 + V(x)
+\\
+&=
+\frac{p^2}{2m} + V(x)
+\end{align*}
+\end{block}}
+\uncover<3->{%
+\begin{block}{Quantisierungsregel}
+\begin{align*}
+\text{Variable}&\to \text{Operator}
+\\
+x_k & \to x_k
+\\
+p_k & \to \frac{\hbar}{i} \frac{\partial}{\partial x_k}
+\end{align*}
+\end{block}}
+\end{column}
+\begin{column}{0.66\textwidth}
+\uncover<4->{%
+\begin{block}{Energie-Operator}
+\[
+H
+=
+-\frac{\hbar^2}{2m}\Delta + V(x)
+\]
+\end{block}}
+\uncover<5->{%
+\begin{block}{Eigenwertgleichung}
+\[
+-\frac{\hbar^2}{2m}\Delta\psi(x,t) + V(x)\psi(x,t) = E\psi(x,t)
+\]
+Zeitunabhängige Schrödingergleichung
+\end{block}}
+\uncover<6->{%
+\begin{block}{Zeitabhängigkeit = Schrödingergleichung}
+\[
+-\frac{\hbar}{i}
+\frac{\partial}{\partial t}
+\psi(x,t)
+=
+-\frac{\hbar^2}{2m}\Delta\psi(x,t) + V(x)\psi(x,t)
+\]
+\uncover<7->{Eigenwertgleichung durch Separation von $t$}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/2/hilbertraum/l2.tex b/vorlesungen/slides/2/hilbertraum/l2.tex
new file mode 100644
index 0000000..bd744ab
--- /dev/null
+++ b/vorlesungen/slides/2/hilbertraum/l2.tex
@@ -0,0 +1,61 @@
+%
+% l2.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{$L^2$-Hilbertraum}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Definition}
+\begin{itemize}
+\item<2->
+Vektorraum: Funktionen
+\[
+f\colon [a,b] \to \mathbb{C}
+\]
+\item<3->
+Sesquilineares Skalarprodukt
+\[
+\langle f,g\rangle
+=
+\int_a^b \overline{f(x)}\, g(x) \,dx
+\]
+\item<4->
+Norm:
+\[
+\|f\|^2 = \int_a^b |f(x)|^2\,dx
+\]
+\item<5->
+Vollständigkeit?
+\uncover<6->{$\rightarrow$
+Lebesgue Konvergenz-Satz}
+\end{itemize}
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<7->{%
+\begin{block}{Vollständigkeit}
+\begin{itemize}
+\item
+Funktioniert nicht für Riemann-Integral
+\item<8->
+Erweiterung des Integrals auf das sogenannte Lebesgue-Integral (nach
+Henri Lebesgue)
+\item<9->
+Abzählbare Mengen spielen keine Rolle $\rightarrow$ Nullmengen
+\item<10->
+Funktionen $\rightarrow$ Klassen von Funktionen, die sich auf einer Nullmenge
+unterscheiden
+\item<11->
+Konvergenz-Satz von Lebesgue $\rightarrow$ es funktioniert
+\end{itemize}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/2/hilbertraum/l2beispiel.tex b/vorlesungen/slides/2/hilbertraum/l2beispiel.tex
new file mode 100644
index 0000000..3ae44af
--- /dev/null
+++ b/vorlesungen/slides/2/hilbertraum/l2beispiel.tex
@@ -0,0 +1,82 @@
+%
+% l2beispiel.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Beispiele: $\mathbb{R},\mathbb{R}^2,\dots,\mathbb{R}^n,\dots,l^2$}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Definition}
+\begin{itemize}
+\item<2-> Quadratsummierbare Folgen von komplexen Zahlen
+\[
+l^2
+=
+\biggl\{
+(x_k)_{k\in\mathbb{N}}\,\bigg|\, \sum_{k=0}^\infty |x_k|^2 < \infty
+\biggr\}
+\]
+\item<3-> Skalarprodukt:
+\begin{align*}
+\langle x,y\rangle
+&=
+\sum_{k=0}^\infty \overline{x}_ky_k,
+&
+\uncover<4->{\|x\|^2 = \sum_{k=0}^\infty |x_k|^2}
+\end{align*}
+\item<5-> Vollständigkeit,
+Konvergenz: Cauchy-Schwarz-Ungleichung
+\[
+\biggl|
+\sum_{k=0}^\infty \overline{x}_ky_k
+\biggr|
+\le
+\sum_{k=0}^\infty |x_k|^2
+\sum_{l=0}^\infty |y_l|^2
+\]
+\end{itemize}
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<6->{%
+\begin{block}{Standardbasisvektoren}
+\begin{align*}
+e_i
+&=
+(0,\dots,0,\underset{\underset{\textstyle i}{\textstyle\uparrow}}{1},0,\dots)
+\\
+\uncover<7->{(e_i)_k &= \delta_{ik}}
+\end{align*}
+\uncover<8->{sind orthonormiert:
+\begin{align*}
+\langle e_i,e_j\rangle
+&=
+\sum_k \overline{\delta}_{ik}\delta_{jk}
+\uncover<9->{=
+\delta_{ij}}
+\end{align*}}
+\end{block}}
+\vspace{-16pt}
+\uncover<10->{%
+\begin{block}{Analyse}
+$x_k$ kann mit Skalarprodukten gefunden werden:
+\begin{align*}
+\hat{x}_i
+=
+\langle e_i,x\rangle
+&\uncover<11->{=
+\sum_{k=0}^\infty \overline{\delta}_{ik} x_k}
+\uncover<12->{=
+x_i}
+\end{align*}
+\uncover<13->{(Fourier-Koeffizienten)}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/2/hilbertraum/laplace.tex b/vorlesungen/slides/2/hilbertraum/laplace.tex
new file mode 100644
index 0000000..8f6b196
--- /dev/null
+++ b/vorlesungen/slides/2/hilbertraum/laplace.tex
@@ -0,0 +1,66 @@
+%
+% laplace.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Höhere Dimension}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.44\textwidth}
+\begin{block}{Problem}
+Gegeben: $\Omega\subset\mathbb{R}^n$ ein Gebiet
+\\
+Gesucht: Lösungen von $\Delta u=0$ mit $u_{|\partial\Omega}=0$
+\end{block}
+\uncover<2->{%
+\begin{block}{Funktionen}
+Hilbertraum $H$ der Funktionen $f:\overline{\Omega}\to\mathbb{C}$
+mit $f_{|\partial\Omega}=0$
+\end{block}}
+\uncover<3->{%
+\begin{block}{Skalarprodukt}
+\[
+\langle f,g\rangle
+=
+\int_{\Omega} \overline{f}(x) g(x)\,d\mu(x)
+\]
+\end{block}}
+\uncover<4->{%
+\begin{block}{Laplace-Operator}
+\[
+\Delta \psi = \operatorname{div}\operatorname{grad}\psi
+\]
+\end{block}}
+\end{column}
+\begin{column}{0.52\textwidth}
+\uncover<5->{%
+\begin{block}{Selbstadjungiert}
+\begin{align*}
+\langle f,\Delta g\rangle
+&\uncover<6->{=
+\int_{\Omega} \overline{f}(x)\operatorname{div}\operatorname{grad}g(x)\,d\mu(x)}
+\\
+&\uncover<7->{=
+\int_{\partial\Omega}
+\underbrace{\overline{f}(x)}_{\displaystyle=0}\operatorname{grad}g(x)\,d\nu(x)}
+\\
+&\uncover<7->{\qquad
+-
+\int_{\Omega}
+\operatorname{grad}\overline{f}(x)\cdot \operatorname{grad}g(x)
+\,d\mu(x)}
+\\
+&\uncover<8->{=\int_{\Omega}\operatorname{div}\operatorname{grad}\overline{f}(x)g(x)\,d\mu(x)}
+\\
+&\uncover<9->{=
+\langle \Delta f,g\rangle}
+\end{align*}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/2/hilbertraum/plancherel.tex b/vorlesungen/slides/2/hilbertraum/plancherel.tex
new file mode 100644
index 0000000..73dd46b
--- /dev/null
+++ b/vorlesungen/slides/2/hilbertraum/plancherel.tex
@@ -0,0 +1,102 @@
+%
+% plancherel.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Plancherel-Gleichung}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Hilbertraum mit Hilbert-Basis}
+$H$ Hilbertraum mit Hilbert-Basis
+$\mathcal{B}=\{b_k\;|\; k>0\}$, $x\in H$
+\end{block}
+\uncover<2->{%
+\begin{block}{Analyse: Fourier-Koeffizienten}
+\begin{align*}
+a_k = \hat{x}_k &=\langle b_k, x\rangle
+\\
+\uncover<3->{\hat{x}&=\mathcal{F}x}
+\end{align*}
+\end{block}}
+\vspace{-10pt}
+\uncover<4->{%
+\begin{block}{Synthese: Fourier-Reihe}
+\begin{align*}
+\tilde{x}
+&=
+\sum_k a_k b_k
+\uncover<5->{=
+\sum_k \langle x,b_k\rangle b_k}
+\end{align*}
+\end{block}}
+\vspace{-6pt}
+\uncover<6->{%
+\begin{block}{Analyse von $\tilde{x}$}
+\begin{align*}
+\langle b_l,\tilde{x}\rangle
+&=
+\biggl\langle
+b_l,\sum_{k}\langle b_k,x\rangle b_k
+\biggr\rangle
+\uncover<7->{=
+\sum_k \langle b_k,x\rangle\langle b_l,b_k\rangle}
+\uncover<8->{=
+\sum_k \langle b_k,x\rangle\delta_{kl}}
+\uncover<9->{=
+\langle b_l,x\rangle}
+\uncover<10->{=
+\hat{x}_l}
+\end{align*}
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<11->{%
+\begin{block}{Plancherel-Gleichung}
+\begin{align*}
+\|\tilde{x}\|^2
+&=
+\langle \tilde{x},\tilde{x}\rangle
+=
+\biggl\langle
+\sum_k \hat{x}_kb_k,
+\sum_l \hat{x}_lb_l
+\biggr\rangle
+\\
+&\uncover<12->{=
+\sum_{k,l} \overline{\hat{x}}_k\hat{x}_l\langle b_k,b_l\rangle}
+\uncover<13->{=
+\sum_{k,l} \overline{\hat{x}}_k\hat{x}_l\delta_{kl}}
+\\
+\uncover<14->{
+\|\tilde{x}\|^2
+&=
+\sum_k |\hat{x}_k|^2}
+\uncover<15->{=
+\|\hat{x}\|_{l^2}^2}
+\uncover<16->{=
+\|\mathcal{F}x\|_{l^2}^2}
+\end{align*}
+\end{block}}
+\vspace{-12pt}
+\uncover<17->{%
+\begin{block}{Isometrie}
+\begin{align*}
+\mathcal{F}
+\colon
+H \to l^2
+\colon
+x\mapsto \hat{x}
+\end{align*}
+\uncover<18->{Alle separablen Hilberträume sind isometrisch zu $l^2$ via
+%Fourier-Transformation
+$\mathcal{F}$}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/2/hilbertraum/qm.tex b/vorlesungen/slides/2/hilbertraum/qm.tex
new file mode 100644
index 0000000..a108121
--- /dev/null
+++ b/vorlesungen/slides/2/hilbertraum/qm.tex
@@ -0,0 +1,90 @@
+%
+% qm.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Anwendung: Quantenmechanik}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Zustände (Wellenfunktion)}
+$L^2$-Funktionen auf $\mathbb{R}^3$
+\[
+\psi\colon\mathbb{R}^3\to\mathbb{C}
+\]
+\end{block}
+\vspace{-6pt}
+\uncover<2->{%
+\begin{block}{Wahrscheinlichkeitsinterpretation}
+\[
+|\psi(x)|^2 = \left\{
+\begin{minipage}{4.6cm}\raggedright
+Wahrscheinlichkeitsdichte für Position $x$ des Teilchens
+\end{minipage}\right.
+\]
+\end{block}}
+\vspace{-6pt}
+\uncover<3->{%
+\begin{block}{Skalarprodukt}
+\[
+\langle\psi,\psi\rangle
+=
+\int_{\mathbb{R}^3} |\psi(x)|^2\,dx = 1
+\]
+\end{block}}
+\vspace{-6pt}
+\uncover<4->{%
+\begin{block}{Messgrösse $A$}
+Selbstadjungierter Operator $A$
+\\
+\uncover<5->{$\rightarrow$
+Hilbertbasis $|i\rangle$ von EV von $A$}
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<6->{%
+\begin{block}{Überlagerung}
+\begin{align*}
+|\psi\rangle
+&=
+\sum_i
+w_i|i\rangle
+\\
+\uncover<7->{\langle \psi|\psi\rangle
+&=
+\sum_i |w_i|^2 \qquad\text{(Plancherel)}}
+\end{align*}
+\uncover<8->{%
+$|w_i|^2=|\langle \psi|i\rangle|^2$ Wahrscheinlichkeit für Zustand $|i\rangle$
+}
+\end{block}}
+\uncover<9->{%
+\begin{block}{Erwartungswert}
+\begin{align*}
+E(A)
+&\uncover<10->{=
+\sum_i |w_i|^2 \alpha_i}
+\uncover<11->{=
+\sum_i \overline{w}_i\alpha_i w_i }
+\hspace{5cm}
+\\
+&\only<12>{=
+\sum_{i,j} \overline{w}_j\alpha_i w_i \langle j|i\rangle}
+\uncover<13->{=
+\sum_{i} \overline{w}_j\langle j| \sum_i \alpha_i w_i |i\rangle}
+\\
+&\uncover<14->{=
+\sum_{i,j} \overline{w}_j w_i \langle j|
+A|i\rangle}
+\uncover<15->{=
+\langle \psi| A |\psi\rangle}
+\end{align*}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/2/hilbertraum/riesz.tex b/vorlesungen/slides/2/hilbertraum/riesz.tex
new file mode 100644
index 0000000..437fb3c
--- /dev/null
+++ b/vorlesungen/slides/2/hilbertraum/riesz.tex
@@ -0,0 +1,76 @@
+%
+% riesz.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Darstellungssatz von Riesz}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Dualraum}
+$V$ ein Vektorraum, $V^*$ der Raum aller Linearformen
+\[
+f\colon V\to \mathbb{C}
+\]
+\end{block}
+\uncover<3->{%
+\begin{block}{Beispiel: $l^\infty$}
+$l^\infty=\text{beschränkte Folgen in $\mathbb{C}$}$,
+Linearformen:
+\begin{align*}
+\uncover<4->{
+f(x)
+&=
+\sum_{i=0}^\infty f_ix_i}
+\\
+\uncover<5->{
+\|f\|
+&=
+\sup_{\|x\|_{\infty}\le 1}
+|f(x)|}
+\uncover<6->{=
+\sum_{k\in\mathbb{N}} |f_k|}
+\\
+\uncover<7->{
+\Rightarrow
+l^{\infty*}
+&=
+l^1}
+\uncover<9->{\qquad(\ne l^2)}
+\\
+\uncover<8->{
+&=\{\text{summierbare Folgen in $\mathbb{C}$}\}
+}
+\end{align*}
+
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<2->{%
+\begin{block}{Beispiel: $\mathbb{C}^n$}
+${\mathbb{C}^n}^* = \mathbb{C}^n$
+\end{block}}
+\uncover<10->{%
+\begin{theorem}[Riesz]
+Zu einer stetigen Linearform $f\colon H\to\mathbb{C}$ gibt es $v\in H$ mit
+\[
+f(x) = \langle v,x\rangle
+\quad\forall x\in H
+\]
+und $\|f\| = \|v\|$
+\end{theorem}}
+\uncover<11->{%
+\begin{block}{Dualraum von $H$}
+$H^*=H$
+\end{block}}%
+\uncover<12->{%
+Der Hilbertraum ist die ``intuitiv richtige, unendlichdimensionale''
+Verallgemeinerung von $\mathbb{C}^n$}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/2/hilbertraum/rieszbeispiel.tex b/vorlesungen/slides/2/hilbertraum/rieszbeispiel.tex
new file mode 100644
index 0000000..de9383f
--- /dev/null
+++ b/vorlesungen/slides/2/hilbertraum/rieszbeispiel.tex
@@ -0,0 +1,107 @@
+%
+% rieszbeispiel.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Linearform auf $L^2$-Funktionen}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Linearform auf $\mathbb{C}^n$}
+\begin{align*}
+{\color{blue}x}&=\begin{pmatrix}x_1\\x_2\\\vdots\\x_n\end{pmatrix},
+&
+f({\color{blue}x})
+&=
+\begin{pmatrix}f_1&f_2&\dots&f_n\end{pmatrix} {\color{blue}x}
+\\
+\uncover<2->{
+{\color{red}v}&=
+\rlap{$
+\begin{pmatrix}
+\overline{f}_1&\overline{f}_2&\dots&\overline{f}_n
+\end{pmatrix}^t
+\uncover<3->{\;\Rightarrow\;
+f({\color{blue}x})=\langle {\color{red}v},{\color{blue}x}\rangle}
+$}}
+\end{align*}
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<4->{%
+\begin{block}{Linearform auf $L^2([a,b])$}
+\begin{align*}
+{\color{red}x}&\in L^2([a,b])
+\\
+\uncover<5->{
+f&\colon L^2([a,b]) \to \mathbb{C}
+: {\color{red}x} \mapsto f({\color{red}x})}
+\intertext{\uncover<6->{Riesz-Darstellungssatz: $\exists {\color{blue}v}\in L^2([a,b])$}}
+\uncover<7->{f({\color{red}x})
+&=
+\int_a^b {\color{blue}\overline{v}(t)}{\color{red}x(t)}\,dt}
+\end{align*}
+\end{block}}
+\end{column}
+\end{columns}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\begin{scope}[xshift=-3.5cm]
+\def\s{0.058}
+\foreach \n in {0,...,5}{
+\uncover<3->{
+ \draw[color=red,line width=3pt]
+ ({\n+\s},{1/(\n+0.5)}) -- ({\n+\s},0);
+ \node[color=red] at ({\n},{-0.2+1/(\n+0.5)})
+ [above right] {$v_\n\mathstrut$};
+}
+ \draw[color=blue,line width=3pt]
+ ({\n-\s},{0.4+0.55*sin(200*\n)+0.25*\n}) -- ({\n-\s},0);
+ \node[color=blue] at ({\n},{-0.2+0.4+0.55*sin(200*\n)+0.25*\n})
+ [above left] {$x_\n\mathstrut$};
+}
+\draw[->] (-0.6,0) -- (6,0) coordinate[label={$n$}];
+\draw[->] (-0.5,-0.1) -- (-0.5,2.5) coordinate[label={right:$x$}];
+\foreach \n in {0,...,5}{
+ \fill (\n,0) circle[radius=0.08];
+ \node at (\n,0) [below] {$\n$\strut};
+}
+\node at (5.6,0) [below] {$\cdots$\strut};
+\end{scope}
+\uncover<4->{
+\begin{scope}[xshift=3.5cm]
+\uncover<7->{
+\fill[color=red!40,opacity=0.5]
+ plot[domain=0:5,samples=100] (\x,{1/(\x+0.5)})
+ --
+ (5,0) -- (0,0) -- cycle;
+}
+\fill[color=blue!40,opacity=0.5]
+ plot[domain=0:5,samples=100] (\x,{0.4+0.55*sin(200*\x)+0.25*\x})
+ -- (5,0) -- (0,0) -- cycle;
+\uncover<7->{
+\draw[color=red,line width=1.4pt]
+ plot[domain=0:5,samples=100] (\x,{1/(\x+0.5)});
+\node[color=red] at (0,2) [right] {$x(t)$};
+}
+
+\draw[color=blue,line width=1.4pt]
+ plot[domain=0:5,samples=100] (\x,{0.4+0.55*sin(200*\x)+0.25*\x});
+\node[color=blue] at (4.5,2) [right]{$v(t)$};
+
+\draw[->] (-0.6,0) -- (6.0,0) coordinate[label={$t$}];
+\draw[->] (-0.5,-0.1) -- (-0.5,2.5) coordinate[label={right:$x$}];
+\draw (0.0,-0.1) -- (0.0,0.1);
+\node at (0.0,0) [below] {$a$\strut};
+\draw (5.0,-0.1) -- (5.0,0.1);
+\node at (5.0,0) [below] {$b$\strut};
+\end{scope}
+}
+\end{tikzpicture}
+\end{center}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/2/hilbertraum/sobolev.tex b/vorlesungen/slides/2/hilbertraum/sobolev.tex
new file mode 100644
index 0000000..828d34d
--- /dev/null
+++ b/vorlesungen/slides/2/hilbertraum/sobolev.tex
@@ -0,0 +1,51 @@
+%
+% sobolev.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Sobolev-Raum}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Vektorrraum $W$}
+Funktionen $f\colon \Omega\to\mathbb{C}$
+\begin{itemize}
+\item<2->
+$f\in L^2(\Omega)$
+\item<3->
+$\nabla f\in L^2(\Omega)$
+\item<4->
+homogene Randbedingungen:
+$f_{|\partial \Omega}=0$
+\end{itemize}
+\end{block}
+\uncover<5->{%
+\begin{block}{Skalarprodukt}
+\begin{align*}
+\langle f,g\rangle_W
+&\uncover<6->{=
+\int_\Omega \overline{\nabla f}(x)\cdot\nabla g(x)\,d\mu(x)}
+\\
+&\uncover<7->{\qquad + \int_{\Omega} \overline{f}(x)\,g(x)\,d\mu(x)}
+\\
+&\uncover<8->{=\langle f,-\Delta g + g\rangle_{L^2(\Omega)}}
+\end{align*}
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<9->{%
+\begin{block}{Vollständigkeit}
+\dots
+\end{block}}
+\uncover<10->{%
+\begin{block}{Anwendung}
+``Ein Hilbertraum für jedes partielle Differentialgleichungsproblem''
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/2/hilbertraum/spektral.tex b/vorlesungen/slides/2/hilbertraum/spektral.tex
new file mode 100644
index 0000000..b561b69
--- /dev/null
+++ b/vorlesungen/slides/2/hilbertraum/spektral.tex
@@ -0,0 +1,91 @@
+%
+% spektral.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Spektraltheorie für selbstadjungierte Operatoren}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Voraussetzungen}
+\begin{itemize}
+\item
+Hilbertraum $H$
+\item
+$A\colon H\to H$ linear
+\end{itemize}
+\end{block}
+\uncover<2->{%
+\begin{block}{Eigenwerte}
+$x\in H$ ein EV von $A$ zum EW $\lambda\ne 0$
+\begin{align*}
+\uncover<3->{\langle x,x\rangle
+&=
+\frac1{\lambda}
+\langle x,\lambda x\rangle}
+\uncover<3->{=
+\frac1{\lambda}
+\langle x,Ax\rangle}
+\\
+&\uncover<4->{=
+\frac1{\lambda}
+\langle Ax,x\rangle}
+\uncover<5->{=
+\frac{\overline{\lambda}}{\lambda}
+\langle x,x\rangle}
+\\
+\uncover<6->{\frac{\overline{\lambda}}{\lambda}&=1
+\quad\Rightarrow\quad
+\overline{\lambda} = \lambda}
+\uncover<7->{\quad\Rightarrow\quad
+\lambda\in\mathbb{R}}
+\end{align*}
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<8->{%
+\begin{block}{Orthogonalität}
+$u,v$ EV zu EW $\mu,\lambda\in \mathbb{R}\setminus\{0\}$, $\overline{\mu}=\mu\ne\lambda$
+\begin{align*}
+\uncover<9->{
+\langle u,v\rangle
+&=
+\frac{1}{\mu}
+\langle \mu u,v\rangle}
+\uncover<10->{=
+\frac{1}{\mu}
+\langle Au,v\rangle}
+\\
+&\uncover<11->{=
+\frac{1}{\mu}
+\langle u,Av\rangle}
+\uncover<12->{=
+\frac{1}{\mu}
+\langle u,\lambda v\rangle}
+\uncover<13->{=
+\frac{\lambda}{\mu}
+\langle u,v\rangle}
+\\
+\uncover<14->{\Rightarrow
+\;
+0
+&=
+\underbrace{\biggl(\frac{\lambda}{\mu}-1\biggr)}_{\displaystyle \ne 0}
+\langle u,v\rangle}
+\uncover<15->{\;\Rightarrow\;
+\langle u,v\rangle = 0}
+\end{align*}
+\uncover<16->{EV zu verschiedenen EW sind orthogonal}
+\end{block}}
+\end{column}
+\end{columns}
+\uncover<17->{%
+\begin{block}{Spektralsatz}
+Es gibt eine Hilbertbasis von $H$ aus Eigenvektoren von $A$
+\end{block}}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/2/hilbertraum/sturm.tex b/vorlesungen/slides/2/hilbertraum/sturm.tex
new file mode 100644
index 0000000..a6865ab
--- /dev/null
+++ b/vorlesungen/slides/2/hilbertraum/sturm.tex
@@ -0,0 +1,58 @@
+%
+% sturm.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Sturm-Liouville-Problem}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Wellengleichung}
+Saite mit variabler Massedichte führt auf die DGL
+\[
+-y''(t) + q(t) y(t) = \lambda y(t),
+\quad
+q(t) > 0
+\]
+mit Randbedingungen $y(0)=y(1)=0$
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<2->{%
+\begin{block}{Sturm-Liouville-Operator}
+\[
+A=-\frac{d^2}{dt^2} + q(t) = -D^2 + p
+\]
+auf differenzierbaren Funktionen $\Omega=[0,1]\to\mathbb{C}$ mit Randwerten
+\[
+f(0)=f(1)=0
+\]
+\end{block}}
+\end{column}
+\end{columns}
+\uncover<3->{%
+\begin{block}{Selbstadjungiert}
+\begin{align*}
+\langle f,Ag \rangle
+&\uncover<4->{=
+\langle f,-D^2 g\rangle + \langle f,qg\rangle
+=
+-
+\int_0^1 \overline{f}(t) \frac{d^2}{dt^2}g(t)\,dt
++\langle f,qg\rangle}
+\\
+&\uncover<5->{=-\underbrace{[\overline{f}(t)g'(t)]_0^1}_{\displaystyle=0}
++\int_0^1 \overline{f}'(t)g'(t)\,dt
++\langle f,qg\rangle}
+\uncover<6->{=-\int_0^1 \overline{f}''(t)g(t)\,dt
++\langle qf,g\rangle}
+\\
+&\uncover<7->{=\langle Af,g\rangle}
+\end{align*}
+\end{block}}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/8/Makefile.inc b/vorlesungen/slides/8/Makefile.inc
index 81f91d0..6ac5665 100644
--- a/vorlesungen/slides/8/Makefile.inc
+++ b/vorlesungen/slides/8/Makefile.inc
@@ -35,5 +35,18 @@ chapter8 = \
../slides/8/subgraph.tex \
../slides/8/chrwilf.tex \
../slides/8/weitere.tex \
+ ../slides/8/wavelets/funktionen.tex \
+ ../slides/8/wavelets/laplacebasis.tex \
+ ../slides/8/wavelets/vektoren.tex \
+ ../slides/8/wavelets/fourier.tex \
+ ../slides/8/wavelets/lokalisierungsvergleich.tex \
+ ../slides/8/wavelets/frequenzlokalisierung.tex \
+ ../slides/8/wavelets/dilatation.tex \
+ ../slides/8/wavelets/matrixdilatation.tex \
+ ../slides/8/wavelets/gundh.tex \
+ ../slides/8/wavelets/dilbei.tex \
+ ../slides/8/wavelets/frame.tex \
+ ../slides/8/wavelets/framekonstanten.tex \
+ ../slides/8/wavelets/beispiel.tex \
../slides/8/chapter.tex
diff --git a/vorlesungen/slides/8/chapter.tex b/vorlesungen/slides/8/chapter.tex
index 7511e3e..69b7231 100644
--- a/vorlesungen/slides/8/chapter.tex
+++ b/vorlesungen/slides/8/chapter.tex
@@ -38,3 +38,16 @@
\folie{8/chrwilf.tex}
\folie{8/weitere.tex}
+\folie{8/wavelets/funktionen.tex}
+\folie{8/wavelets/laplacebasis.tex}
+\folie{8/wavelets/fourier.tex}
+\folie{8/wavelets/lokalisierungsvergleich.tex}
+\folie{8/wavelets/frequenzlokalisierung.tex}
+\folie{8/wavelets/dilatation.tex}
+\folie{8/wavelets/matrixdilatation.tex}
+\folie{8/wavelets/gundh.tex}
+\folie{8/wavelets/frame.tex}
+\folie{8/wavelets/dilbei.tex}
+\folie{8/wavelets/framekonstanten.tex}
+\folie{8/wavelets/beispiel.tex}
+
diff --git a/vorlesungen/slides/8/wavelets/Makefile b/vorlesungen/slides/8/wavelets/Makefile
new file mode 100644
index 0000000..3b4a5ce
--- /dev/null
+++ b/vorlesungen/slides/8/wavelets/Makefile
@@ -0,0 +1,8 @@
+#
+# Makefile
+#
+# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+#
+
+vektoren.tex: ev.m
+ octave ev.m
diff --git a/vorlesungen/slides/8/wavelets/beispiel.tex b/vorlesungen/slides/8/wavelets/beispiel.tex
new file mode 100644
index 0000000..dcc33d4
--- /dev/null
+++ b/vorlesungen/slides/8/wavelets/beispiel.tex
@@ -0,0 +1,44 @@
+%
+% beispiel.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\def\bild#1#2{
+\node at (0,0) [rotate=-90]
+{\includegraphics[width=#1\textwidth]{../../../SeminarWavelets/buch/papers/sgwt/images/#2}};
+}
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Wavelets auf einer Kugel}
+\vspace{-10pt}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+
+\only<1>{ \bild{0.6}{wavelets-phi-sphere-334.pdf} }
+
+\only<2>{ \bild{0.6}{wavelets-psi-5-sphere-334.pdf} }
+\only<3>{ \bild{0.6}{wavelets-psi-4-sphere-334.pdf} }
+\only<4>{ \bild{0.6}{wavelets-psi-3-sphere-334.pdf} }
+\only<5>{ \bild{0.6}{wavelets-psi-2-sphere-334.pdf} }
+\only<6>{ \bild{0.6}{wavelets-psi-1-sphere-334.pdf} }
+
+\only<1>{ \node at (-7.6,2.8) [right] {Bandpass mit $g_1$}; }
+\only<2>{ \node at (-7.6,2.8) [right] {Bandpass mit $g_2$}; }
+\only<3>{ \node at (-7.6,2.8) [right] {Bandpass mit $g_3$}; }
+\only<4>{ \node at (-7.6,2.8) [right] {Bandpass mit $g_4$}; }
+\only<5>{ \node at (-7.6,2.8) [right] {Bandpass mit $g_5$}; }
+\only<6>{ \node at (-7.6,2.8) [right] {Tiefpass mit $h$}; }
+
+\only<1>{ \node at (-7.6,2) [right] {$D_{g,1/a_1}\chi_*$}; }
+\only<2>{ \node at (-7.6,2) [right] {$D_{g,1/a_2}\chi_*$}; }
+\only<3>{ \node at (-7.6,2) [right] {$D_{g,1/a_3}\chi_*$}; }
+\only<4>{ \node at (-7.6,2) [right] {$D_{g,1/a_4}\chi_*$}; }
+\only<5>{ \node at (-7.6,2) [right] {$D_{g,1/a_5}\chi_*$}; }
+\only<6>{ \node at (-7.6,2) [right] {$D_{h}\chi_*$}; }
+
+\end{tikzpicture}
+\end{center}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/8/wavelets/dilatation.tex b/vorlesungen/slides/8/wavelets/dilatation.tex
new file mode 100644
index 0000000..881f760
--- /dev/null
+++ b/vorlesungen/slides/8/wavelets/dilatation.tex
@@ -0,0 +1,62 @@
+%
+% template.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Dilatation}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Dilatation in $\mathbb{R}$}
+$f\colon \mathbb{R}\to\mathbb{R}$
+Definition im Ortsraum:
+\[
+(D_af)(x)
+=
+\frac{1}{\sqrt{|a|}}
+f\biggl(\frac{x}{a}\biggr)
+\]
+\uncover<2->{%
+Dilatation im Frequenzraum:
+\[
+\widehat{D_af}(\omega)
+=
+D_{1/a}\hat{f}(\omega)
+\]}
+\uncover<3->{%
+Spektrum wird mit $1/a$ skaliert!}
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<4->{%
+\begin{block}{``Dilatation'' auf einem Graphen}
+\begin{itemize}
+\item<5-> Dilatation auf dem Graphen gibt es nicht
+\item<6-> Dilatation im Spektrum $\{\lambda_1,\dots,\lambda_n\}$ gibt es nicht
+\item<7-> ``Spektrale Dilatation'' verwenden
+\begin{enumerate}
+\item<8-> Start: $e_k$
+\item<9-> Fourier-Transformation: $\chi^te_k$
+\item<10-> Spektrum skalieren: mit
+$D_{1/a}g$ filtern
+\item<11-> Rücktransformation
+\[
+D_{g,a}e_k
+=
+\chi
+\uncover<12->{\operatorname{diag}(\tilde{D}_{1/a}g(\lambda_*))
+\chi^t e_k}
+\]
+\end{enumerate}
+\end{itemize}
+
+
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/8/wavelets/dilbei.tex b/vorlesungen/slides/8/wavelets/dilbei.tex
new file mode 100644
index 0000000..fc66a0a
--- /dev/null
+++ b/vorlesungen/slides/8/wavelets/dilbei.tex
@@ -0,0 +1,46 @@
+%
+% beispiel.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\def\bild#1#2{
+\node at (0,0) [rotate=-90]
+{\includegraphics[width=#1\textwidth]{../../../SeminarWavelets/buch/papers/sgwt/images/#2}};
+}
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Wavelets einer Strecke}
+\vspace{-10pt}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+
+\only<1>{ \bild{0.6}{wavelets-psi-line-5-10.pdf} }
+\only<2>{ \bild{0.6}{wavelets-psi-line-4-10.pdf} }
+\only<3>{ \bild{0.6}{wavelets-psi-line-3-10.pdf} }
+\only<4>{ \bild{0.6}{wavelets-psi-line-2-10.pdf} }
+\only<5>{ \bild{0.6}{wavelets-psi-line-1-10.pdf} }
+
+\only<6>{ \bild{0.6}{wavelets-phi-line-10.pdf} }
+
+\only<1>{ \node at (-7.6,2.8) [right] {Bandpass mit $g_1$}; }
+\only<2>{ \node at (-7.6,2.8) [right] {Bandpass mit $g_2$}; }
+\only<3>{ \node at (-7.6,2.8) [right] {Bandpass mit $g_3$}; }
+\only<4>{ \node at (-7.6,2.8) [right] {Bandpass mit $g_4$}; }
+\only<5>{ \node at (-7.6,2.8) [right] {Bandpass mit $g_5$}; }
+\only<6>{ \node at (-7.6,2.8) [right] {Tiefpass mit $h$}; }
+
+
+\only<1>{ \node at (-7.6,2) [right] {$D_{g,1/a_1}\chi_*$}; }
+\only<2>{ \node at (-7.6,2) [right] {$D_{g,1/a_2}\chi_*$}; }
+\only<3>{ \node at (-7.6,2) [right] {$D_{g,1/a_3}\chi_*$}; }
+\only<4>{ \node at (-7.6,2) [right] {$D_{g,1/a_4}\chi_*$}; }
+\only<5>{ \node at (-7.6,2) [right] {$D_{g,1/a_5}\chi_*$}; }
+
+\only<6>{ \node at (-7.6,2) [right] {$D_{h}\chi_*$}; }
+
+\end{tikzpicture}
+\end{center}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/8/wavelets/ev.m b/vorlesungen/slides/8/wavelets/ev.m
new file mode 100644
index 0000000..7f4dd55
--- /dev/null
+++ b/vorlesungen/slides/8/wavelets/ev.m
@@ -0,0 +1,97 @@
+#
+# ev.m
+#
+# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+#
+
+L = [
+ 2, -1, 0, -1, 0;
+ -1, 4, -1, -1, -1;
+ 0, -1, 2, 0, -1;
+ -1, -1, 0, 3, -1;
+ 0, -1, -1, -1, 3
+];
+
+[v, lambda] = eig(L);
+
+function knoten(fn, wert, punkt)
+ if (wert > 0)
+ farbe = sprintf("red!%02d", round(100 * wert));
+ else
+ farbe = sprintf("blue!%02d", round(-100 * wert));
+ end
+ fprintf(fn, "\t\\fill[color=%s] %s circle[radius=0.25];\n",
+ farbe, punkt);
+ fprintf(fn, "\t\\draw %s circle[radius=0.25];\n", punkt);
+endfunction
+
+function vektor(fn, v, name, lambda)
+ fprintf(fn, "\\def\\%s{\n", name);
+ fprintf(fn, "\t\\coordinate (A) at ({0*\\a},0);\n");
+ fprintf(fn, "\t\\coordinate (B) at ({1*\\a},0);\n");
+ fprintf(fn, "\t\\coordinate (C) at ({2*\\a},0);\n");
+ fprintf(fn, "\t\\coordinate (D) at ({0.5*\\a},{-\\b});\n");
+ fprintf(fn, "\t\\coordinate (E) at ({1.5*\\a},{-\\b});\n");
+ fprintf(fn, "\t\\draw (A) -- (B);\n");
+ fprintf(fn, "\t\\draw (A) -- (D);\n");
+ fprintf(fn, "\t\\draw (B) -- (C);\n");
+ fprintf(fn, "\t\\draw (B) -- (D);\n");
+ fprintf(fn, "\t\\draw (B) -- (E);\n");
+ fprintf(fn, "\t\\draw (C) -- (E);\n");
+ fprintf(fn, "\t\\draw (D) -- (E);\n");
+ fprintf(fn, "\t\\node at (-2.8,{-0.5*\\b}) [right] {$\\lambda=%.4f$};\n",
+ round(1000 * abs(lambda)) / 10000);
+ w = v / max(abs(v));
+ knoten(fn, w(1,1), "(A)");
+ knoten(fn, w(2,1), "(B)");
+ knoten(fn, w(3,1), "(C)");
+ knoten(fn, w(4,1), "(D)");
+ knoten(fn, w(5,1), "(E)");
+ fprintf(fn, "}\n");
+endfunction
+
+function punkt(fn, x, wert)
+ fprintf(fn, "({%.4f*\\c},{%.4f*\\d})", x, wert);
+endfunction
+
+function funktion(fn, v, name, lambda)
+ fprintf(fn, "\\def\\%s{\n", name);
+ fprintf(fn, "\t\\draw[color=red,line width=1.4pt]\n\t\t");
+ punkt(fn, -2, v(1,1));
+ fprintf(fn, " --\n\t\t");
+ punkt(fn, -1, v(4,1));
+ fprintf(fn, " --\n\t\t");
+ punkt(fn, 0, v(2,1));
+ fprintf(fn, " --\n\t\t");
+ punkt(fn, 1, v(5,1));
+ fprintf(fn, " --\n\t\t");
+ punkt(fn, 2, v(3,1));
+ fprintf(fn, ";\n");
+ fprintf(fn, "\t\\draw[->] ({-2.1*\\c},0) -- ({2.1*\\c},0);\n");
+ fprintf(fn, "\t\\draw[->] (0,{-1.1*\\d}) -- (0,{1.1*\\d});\n");
+ for x = (-2:2)
+ fprintf(fn, "\t\\fill ({%d*\\c},0) circle[radius=0.05];\n", x);
+ endfor
+ fprintf(fn, "}\n");
+endfunction
+
+fn = fopen("vektoren.tex", "w");
+
+vektor(fn, v(:,1), "vnull", lambda(1,1));
+funktion(fn, v(:,1), "fnull", lambda(1,1));
+
+vektor(fn, v(:,2), "vone", lambda(2,2));
+funktion(fn, v(:,2), "fone", lambda(2,2));
+
+vektor(fn, v(:,3), "vtwo", lambda(3,3));
+funktion(fn, v(:,3), "ftwo", lambda(3,3));
+
+vektor(fn, v(:,4), "vthree", lambda(4,4));
+funktion(fn, v(:,4), "fthree", lambda(4,4));
+
+vektor(fn, v(:,5), "vfour", lambda(5,5));
+funktion(fn, v(:,5), "ffour", lambda(5,5));
+
+fclose(fn);
+
+
diff --git a/vorlesungen/slides/8/wavelets/fourier.tex b/vorlesungen/slides/8/wavelets/fourier.tex
new file mode 100644
index 0000000..3195ec8
--- /dev/null
+++ b/vorlesungen/slides/8/wavelets/fourier.tex
@@ -0,0 +1,86 @@
+%
+% fourier.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Fourier-Transformation}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Aufgabe}
+Gegeben: Funktion $f$ auf dem Graphen
+\\
+\uncover<2->{%
+Gesucht: Koeffizienten $\hat{f}$ der Darstellung in der Laplace-Basis}
+\end{block}
+\uncover<3->{%
+\begin{block}{Definition $\chi$-Matrix}
+Eigenwerte $0=\lambda_1<\lambda_2\le \dots \le \lambda_n$ von $L$
+\vspace{-10pt}
+\begin{center}
+\begin{tikzpicture}
+\node at (-1.9,0) [left] {$\chi=\mathstrut$};
+\node at (0,0) {$\left(\raisebox{0pt}[1.7cm][1.7cm]{\hspace{3.5cm}}\right)$};
+
+\fill[color=blue!20] (-1.7,-1.7) rectangle (-1.1,1.7);
+\draw[color=blue] (-1.7,-1.7) rectangle (-1.1,1.7);
+\node at (-1.4,0) [rotate=90] {$v_1=\mathstrut$EV zum EW $\lambda_1$\strut};
+
+\fill[color=blue!20] (-1.0,-1.7) rectangle (-0.4,1.7);
+\draw[color=blue] (-1.0,-1.7) rectangle (-0.4,1.7);
+\node at (-0.7,0) [rotate=90] {$v_2=\mathstrut$EV zum EW $\lambda_2$\strut};
+
+\fill[color=blue!20] (1.1,-1.7) rectangle (1.7,1.7);
+\draw[color=blue] (1.1,-1.7) rectangle (1.7,1.7);
+\node at (1.4,0) [rotate=90] {$v_n=\mathstrut$EV zum EW $\lambda_n$\strut};
+
+\node at (0.4,0) {$\dots$};
+
+\end{tikzpicture}
+\end{center}
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<4->{%
+\begin{block}{Transformation}
+$L$ symmetrisch
+\\
+\uncover<5->{$\Rightarrow$
+Die Eigenvektoren von $L$ können orthonormiert gewählt werden}
+\\
+\uncover<6->{$\Rightarrow$
+Koeffizienten können durch Skalarprodukte ermittelt werden:}
+\uncover<7->{%
+\[
+\hat{f}(k)
+=
+\hat{f}(\lambda_k)
+\uncover<8->{=
+\langle v_k, f\rangle
+\quad\Rightarrow\quad
+\hat{f}}
+\uncover<9->{=
+\chi^tf}
+\]}
+\uncover<10->{%
+$\chi$ ist die {\em Fourier-Transformation}}
+\end{block}}
+\uncover<11->{%
+\begin{block}{Rücktransformation}
+Eigenvektoren orthonormiert
+\\
+\uncover<12->{$\Rightarrow$
+$\chi$ orthogonal}
+\uncover<13->{
+\[
+\chi\chi^t = I
+\]}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/8/wavelets/frame.tex b/vorlesungen/slides/8/wavelets/frame.tex
new file mode 100644
index 0000000..4d0c7d1
--- /dev/null
+++ b/vorlesungen/slides/8/wavelets/frame.tex
@@ -0,0 +1,66 @@
+%
+% template.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Graph Wavelet Frame}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Frame-Vektoren}
+Zu Dilatationsfaktoren $A=\{a_i\,|\,i=1,\dots,N\}$
+konstruiere das Frame
+\begin{align*}
+F=
+\{&D_he_1,\dots,D_he_n,\\
+ &Dg_1e_1,\dots,Dg_1e_n,\\
+ &Dg_2e_1,\dots,Dg_2e_n,\\
+ &\dots\\
+ &Dg_Ne_1,\dots,Dg_Ne_n\}
+\end{align*}
+\uncover<2->{Notation:
+\begin{align*}
+v_{0,k}
+&=
+D_he_k
+\\
+v_{i,k}
+&=
+Dg_ie_k
+\end{align*}}
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<3->{%
+\begin{block}{Frameoperator}
+\begin{align*}
+\mathcal{T}\colon \mathbb{R}^n\to\mathbb{R}^{nN}
+:
+v
+&\mapsto
+\begin{pmatrix}
+\uncover<4->{\langle D_he_1,v\rangle}\\
+\uncover<4->{\vdots}\\
+\uncover<4->{\langle D_he_n,v\rangle}\\
+\hline
+\uncover<5->{\langle D_{g_1}e_1,v\rangle}\\
+\uncover<5->{\vdots}\\
+\uncover<5->{\langle D_{g_1}e_n,v\rangle}\\
+\hline
+\uncover<6->{\vdots}\\
+\uncover<6->{\vdots}\\
+\hline
+\uncover<7->{\langle D_{g_N}e_1,v\rangle}\\
+\uncover<7->{\vdots}\\
+\uncover<7->{\langle D_{g_N}e_n,v\rangle}
+\end{pmatrix}
+\end{align*}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/8/wavelets/framekonstanten.tex b/vorlesungen/slides/8/wavelets/framekonstanten.tex
new file mode 100644
index 0000000..a436536
--- /dev/null
+++ b/vorlesungen/slides/8/wavelets/framekonstanten.tex
@@ -0,0 +1,71 @@
+%
+% template.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+%\setlength{\abovedisplayskip}{5pt}
+%\setlength{\belowdisplayskip}{5pt}
+\frametitle{Framekonstanten}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Definition}
+Eine Menge $\mathcal{F}$ von Vektoren heisst ein Frame,
+falls es Konstanten $A$ und $B$ gibt derart, dass
+\[
+A\|v\|^2
+\le
+\|\mathcal{T}v\|^2
+\sum_{b\in\mathcal{F}} |\langle b,v\rangle|^2
+\le
+B\|v\|^2
+\]
+\uncover<2->{$A>0$ garantiert Invertierbarkeit}
+\end{block}
+\uncover<3->{%
+\begin{block}{$\|\mathcal{T}v\|$ für Graph-Wavelets}
+\begin{align*}
+\|\mathcal{T}v\|^2
+&=
+\sum_k |\langle D_he_k,v\rangle|^2
++
+\sum_{i,k} |\langle D_{g_i}e_k, v\rangle|^2
+\\
+&\uncover<4->{=
+\sum_k |h(\lambda_k) \hat{v}(k)|^2
++
+\sum_{k,i} |g_i(\lambda_k) \hat{v}(k)|^2}
+\end{align*}
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<5->{%
+\begin{block}{$A$ und $B$}
+Frame-Norm-Funktion
+\begin{align*}
+f(\lambda)
+&=
+h(\lambda)
++
+\sum_i g_i(\lambda)
+\\
+&\uncover<6->{=
+h(\lambda)
++
+\sum_i g(a_i\lambda)}
+\end{align*}
+\uncover<7->{Abschätzung für Frame-Konstanten
+\begin{align*}
+A&\uncover<8->{=
+\min_{i} f(\lambda_i)}
+\\
+B&\uncover<9->{=
+\max_{i} f(\lambda_i)}
+\end{align*}}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/8/wavelets/frequenzlokalisierung.tex b/vorlesungen/slides/8/wavelets/frequenzlokalisierung.tex
new file mode 100644
index 0000000..c78e6dd
--- /dev/null
+++ b/vorlesungen/slides/8/wavelets/frequenzlokalisierung.tex
@@ -0,0 +1,78 @@
+%
+% frequenzlokalisierung.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+
+\def\kurve#1#2{
+ \draw[color=#2,line width=1.4pt]
+ plot[domain=0:6.3,samples=400]
+ ({\x},{7*\x*exp(-(\x/#1)*(\x/#1))/#1});
+}
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Lokalisierung}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Bandpass}
+Gegeben durch $g(\lambda)\ge 0$:
+\begin{align*}
+g(0) &= 0\\
+\lim_{\lambda\to\infty}g(\lambda)&= 0
+\end{align*}
+\vspace{-10pt}
+\begin{enumerate}
+\item<3-> Fourier-transformieren
+\item<4-> Amplituden mit $g(\lambda)$ multiplizieren
+\item<5-> Rücktransformieren
+\end{enumerate}
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<6->{%
+\begin{block}{Tiefpass}
+Gegeben durch $h(\lambda)\ge0$:
+\begin{align*}
+h(0) &= 1\\
+\lim_{\lambda\to\infty}h(\lambda)&= 0
+\end{align*}
+\vspace{-10pt}
+\begin{enumerate}
+\item<8-> Fourier-Transformation
+\item<9-> Amplituden mit $h(\lambda)$ multiplizieren
+\item<10-> Rücktransformation
+\end{enumerate}
+\end{block}}
+\end{column}
+\end{columns}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick,scale=0.8]
+
+\uncover<2->{
+\begin{scope}[xshift=-4.5cm]
+\draw[->] (-0.1,0) -- (6.6,0) coordinate[label={$\lambda$}];
+\kurve{3}{red}
+\draw[->] (0,-0.1) -- (0,3.3);
+\end{scope}
+}
+
+\uncover<7->{
+\begin{scope}[xshift=4.5cm]
+\draw[->] (-0.1,0) -- (6.6,0) coordinate[label={$\lambda$}];
+\draw[color=darkgreen,line width=1.4pt]
+ plot[domain=0:6.3,samples=100]
+ ({\x},{3*exp(-(\x/0.5)*(\x/0.5)});
+
+\draw[->] (0,-0.1) -- (0,3.3) coordinate[label={right:$\color{darkgreen}h(\lambda)$}];
+\end{scope}
+}
+
+\end{tikzpicture}
+\end{center}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/8/wavelets/funktionen.tex b/vorlesungen/slides/8/wavelets/funktionen.tex
new file mode 100644
index 0000000..2e3ae9b
--- /dev/null
+++ b/vorlesungen/slides/8/wavelets/funktionen.tex
@@ -0,0 +1,78 @@
+%
+% funktionen.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\def\knoten#1#2{
+ \draw #1 circle[radius=0.25];
+ \node at #1 {$#2$};
+}
+\def\kante#1#2{
+ \draw[shorten >= 0.25cm,shorten <= 0.25cm] #1 -- #2;
+}
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Funktionen auf einem Graphen}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Definition}
+Ein Graph $G=(V,E)$, eine Funktion auf dem Graphen ist
+\[
+f\colon V \to \mathbb{R} : v\mapsto f(v)
+\]
+Knoten: $V=\{1,\dots,n\}$
+\\
+\uncover<2->{%
+Vektorschreibweise
+\[
+f = \begin{pmatrix}
+f(1)\\f(2)\\\vdots\\f(n)
+\end{pmatrix}
+\]}
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<3->{%
+\begin{block}{Matrizen}
+Adjazenz-, Grad- und Laplace-Matrix operieren auf Funktionen auf Graphen:
+\[
+L
+=
+\begin{pmatrix*}[r]
+ 2&-1& 0&-1& 0\\
+-1& 4&-1&-1&-1\\
+ 0&-1& 2& 0&-1\\
+-1&-1& 0& 3&-1\\
+ 0&-1&-1&-1& 3\\
+\end{pmatrix*}
+\]
+\end{block}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\def\a{2}
+\coordinate (A) at (0,0);
+\coordinate (B) at (\a,0);
+\coordinate (C) at ({2*\a},0);
+\coordinate (D) at ({0.5*\a},{-0.5*sqrt(3)*\a});
+\coordinate (E) at ({1.5*\a},{-0.5*sqrt(3)*\a});
+\knoten{(A)}{1}
+\knoten{(B)}{2}
+\knoten{(C)}{3}
+\knoten{(D)}{4}
+\knoten{(E)}{5}
+\kante{(A)}{(B)}
+\kante{(B)}{(C)}
+\kante{(A)}{(D)}
+\kante{(B)}{(D)}
+\kante{(B)}{(E)}
+\kante{(C)}{(E)}
+\kante{(D)}{(E)}
+\end{tikzpicture}
+\end{center}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/8/wavelets/gundh.tex b/vorlesungen/slides/8/wavelets/gundh.tex
new file mode 100644
index 0000000..2d6c677
--- /dev/null
+++ b/vorlesungen/slides/8/wavelets/gundh.tex
@@ -0,0 +1,85 @@
+%
+% template.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+
+\def\kurve#1#2{
+ \draw[color=#2,line width=1.4pt]
+ plot[domain=0:6.3,samples=400]
+ ({\x},{7*\x*exp(-(\x/#1)*(\x/#1))/#1});
+}
+
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Wavelets}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Mutterwavelets + Dilatation}
+Eine Menge von Dilatationsfaktoren
+\[
+A= \{a_1,a_2,\dots,a_N\}
+\]
+wählen\uncover<2->{, und mit Funktionen
+\[
+{\color{blue}g_i} = \tilde{D}_{1/a_i}{\color{red}g}
+\]
+die Standardbasisvektoren filtern}
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<5->{
+\begin{block}{Vaterwavelets}
+Tiefpass mit Funktion ${\color{darkgreen}h(\lambda)}$,
+Standardbasisvektoren mit ${\color{darkgreen}h}$ filtern:
+\[
+D_{\color{darkgreen}h}e_k
+\]
+\end{block}}
+\end{column}
+\end{columns}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\begin{scope}
+
+\draw[->] (-0.1,0) -- (6.6,0) coordinate[label={$\lambda$}];
+
+\kurve{1}{red}
+\uncover<4->{
+\foreach \k in {0,...,4}{
+ \pgfmathparse{0.30*exp(ln(2)*\k)}
+ \xdef\l{\pgfmathresult}
+ \kurve{\l}{blue}
+}
+}
+
+\node[color=red] at ({0.7*1},3) [above] {$g(\lambda)$};
+\uncover<4->{
+\node[color=blue] at ({0.7*0.3*16},3) [above] {$g_i(\lambda)$};
+}
+
+\draw[->] (0,-0.1) -- (0,3.3);
+\end{scope}
+
+\begin{scope}[xshift=7cm]
+
+\uncover<6->{
+\draw[->] (-0.1,0) -- (6.6,0) coordinate[label={$\lambda$}];
+
+\draw[color=darkgreen,line width=1.4pt]
+ plot[domain=0:6.3,samples=100]
+ ({\x},{3*exp(-(\x/0.5)*(\x/0.5)});
+
+\draw[->] (0,-0.1) -- (0,3.3) coordinate[label={right:$\color{darkgreen}h(\lambda)$}];
+}
+
+\end{scope}
+
+\end{tikzpicture}
+\end{center}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/8/wavelets/laplacebasis.tex b/vorlesungen/slides/8/wavelets/laplacebasis.tex
new file mode 100644
index 0000000..ced4c09
--- /dev/null
+++ b/vorlesungen/slides/8/wavelets/laplacebasis.tex
@@ -0,0 +1,62 @@
+%
+% template.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\def\a{2}
+\def\b{0.8}
+\def\c{1}
+\def\d{0.6}
+\input{../slides/8/wavelets/vektoren.tex}
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Laplace-Basis}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+
+\begin{scope}[yshift=-0.4cm,xshift=-5.5cm]
+\fnull
+\end{scope}
+
+\begin{scope}[yshift=-1.8cm,xshift=-5.5cm]
+\fone
+\end{scope}
+
+\begin{scope}[yshift=-3.2cm,xshift=-5.5cm]
+\ftwo
+\end{scope}
+
+\begin{scope}[yshift=-4.6cm,xshift=-5.5cm]
+\fthree
+\end{scope}
+
+\begin{scope}[yshift=-6.0cm,xshift=-5.5cm]
+\ffour
+\end{scope}
+
+\begin{scope}[yshift=0cm]
+\vnull
+\end{scope}
+
+\begin{scope}[yshift=-1.4cm]
+\vone
+\end{scope}
+
+\begin{scope}[yshift=-2.8cm]
+\vtwo
+\end{scope}
+
+\begin{scope}[yshift=-4.2cm]
+\vthree
+\end{scope}
+
+\begin{scope}[yshift=-5.6cm]
+\vfour
+\end{scope}
+
+\end{tikzpicture}
+\end{center}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/8/wavelets/lokalisierungsvergleich.tex b/vorlesungen/slides/8/wavelets/lokalisierungsvergleich.tex
new file mode 100644
index 0000000..d6575d0
--- /dev/null
+++ b/vorlesungen/slides/8/wavelets/lokalisierungsvergleich.tex
@@ -0,0 +1,46 @@
+%
+% lokalisierungsvergleich.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Lokalisierung}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Ortsraum}
+Ortsraum$\mathstrut=V$
+\begin{itemize}
+\item<3-> Standardbasis
+\item<5-> lokalisiert in den Knoten
+\item<7-> die meisten $\hat{f}(k)$ gross
+\item<9-> vollständig delokalisiert im Frequenzraum
+\end{itemize}
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\begin{block}{Frequenzraum}
+\uncover<2->{Frequenzraum $\mathstrut=\{\lambda_1,\lambda_2,\dots,\lambda_n\}$}
+\begin{itemize}
+\item<4-> Laplace-Basis
+\item<6-> lokalisiert in den Eigenwerten
+\item<8-> die meisten Komponenten gross
+\item<10-> vollständig delokalisiert im Ortsraum
+\end{itemize}
+\end{block}
+\end{column}
+\end{columns}
+\uncover<11->{%
+\begin{block}{Plan}
+Gesucht sind Funktionen auf dem Graphen derart, die
+\begin{enumerate}
+\item<12-> in der Nähe einzelner Knoten konzentriert/lokalisiert sind und
+\item<13-> deren Fourier-Transformation in der Nähe einzelner Eigenwerte
+konzentriert/lokalisiert ist
+\end{enumerate}
+\end{block}}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/8/wavelets/matrixdilatation.tex b/vorlesungen/slides/8/wavelets/matrixdilatation.tex
new file mode 100644
index 0000000..3536736
--- /dev/null
+++ b/vorlesungen/slides/8/wavelets/matrixdilatation.tex
@@ -0,0 +1,39 @@
+%
+% matrixdilatation.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Dilatation in Matrixform}
+Dilatationsfaktor $a$, skaliertes Wavelet beim Knoten $k$ mit Spektrum
+$\tilde{D}_{1/a}g$
+\begin{align*}
+D_{g,a}e_k
+&=
+\chi
+\begin{pmatrix}
+g(a\lambda_1)& 0 & \dots & 0 \\
+ 0 &g(a\lambda_2)& \dots & 0 \\
+ \vdots & \vdots & \ddots & \vdots \\
+ 0 & 0 & \dots &g(a\lambda_n)
+\end{pmatrix}
+\chi^t
+e_k
+\intertext{\uncover<2->{``verschmierter'' Standardbasisvektor am Knoten $k$}}
+\uncover<2->{D_he_k
+&=
+\chi
+\begin{pmatrix}
+h(\lambda_1)& 0 & \dots & 0 \\
+ 0 &h(\lambda_2)& \dots & 0 \\
+ \vdots & \vdots & \ddots & \vdots \\
+ 0 & 0 & \dots &h(\lambda_n)
+\end{pmatrix}
+\chi^t
+e_k}
+\end{align*}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/8/wavelets/vektoren.tex b/vorlesungen/slides/8/wavelets/vektoren.tex
new file mode 100644
index 0000000..2315d53
--- /dev/null
+++ b/vorlesungen/slides/8/wavelets/vektoren.tex
@@ -0,0 +1,200 @@
+\def\vnull{
+ \coordinate (A) at ({0*\a},0);
+ \coordinate (B) at ({1*\a},0);
+ \coordinate (C) at ({2*\a},0);
+ \coordinate (D) at ({0.5*\a},{-\b});
+ \coordinate (E) at ({1.5*\a},{-\b});
+ \draw (A) -- (B);
+ \draw (A) -- (D);
+ \draw (B) -- (C);
+ \draw (B) -- (D);
+ \draw (B) -- (E);
+ \draw (C) -- (E);
+ \draw (D) -- (E);
+ \node at (-2.8,{-0.5*\b}) [right] {$\lambda=0.0000$};
+ \fill[color=red!100] (A) circle[radius=0.25];
+ \draw (A) circle[radius=0.25];
+ \fill[color=red!100] (B) circle[radius=0.25];
+ \draw (B) circle[radius=0.25];
+ \fill[color=red!100] (C) circle[radius=0.25];
+ \draw (C) circle[radius=0.25];
+ \fill[color=red!100] (D) circle[radius=0.25];
+ \draw (D) circle[radius=0.25];
+ \fill[color=red!100] (E) circle[radius=0.25];
+ \draw (E) circle[radius=0.25];
+}
+\def\fnull{
+ \draw[color=red,line width=1.4pt]
+ ({-2.0000*\c},{0.4472*\d}) --
+ ({-1.0000*\c},{0.4472*\d}) --
+ ({0.0000*\c},{0.4472*\d}) --
+ ({1.0000*\c},{0.4472*\d}) --
+ ({2.0000*\c},{0.4472*\d});
+ \draw[->] ({-2.1*\c},0) -- ({2.1*\c},0);
+ \draw[->] (0,{-1.1*\d}) -- (0,{1.1*\d});
+ \fill ({-2*\c},0) circle[radius=0.05];
+ \fill ({-1*\c},0) circle[radius=0.05];
+ \fill ({0*\c},0) circle[radius=0.05];
+ \fill ({1*\c},0) circle[radius=0.05];
+ \fill ({2*\c},0) circle[radius=0.05];
+}
+\def\vone{
+ \coordinate (A) at ({0*\a},0);
+ \coordinate (B) at ({1*\a},0);
+ \coordinate (C) at ({2*\a},0);
+ \coordinate (D) at ({0.5*\a},{-\b});
+ \coordinate (E) at ({1.5*\a},{-\b});
+ \draw (A) -- (B);
+ \draw (A) -- (D);
+ \draw (B) -- (C);
+ \draw (B) -- (D);
+ \draw (B) -- (E);
+ \draw (C) -- (E);
+ \draw (D) -- (E);
+ \node at (-2.8,{-0.5*\b}) [right] {$\lambda=0.1586$};
+ \fill[color=blue!100] (A) circle[radius=0.25];
+ \draw (A) circle[radius=0.25];
+ \fill[color=blue!00] (B) circle[radius=0.25];
+ \draw (B) circle[radius=0.25];
+ \fill[color=red!100] (C) circle[radius=0.25];
+ \draw (C) circle[radius=0.25];
+ \fill[color=blue!41] (D) circle[radius=0.25];
+ \draw (D) circle[radius=0.25];
+ \fill[color=red!41] (E) circle[radius=0.25];
+ \draw (E) circle[radius=0.25];
+}
+\def\fone{
+ \draw[color=red,line width=1.4pt]
+ ({-2.0000*\c},{-0.6533*\d}) --
+ ({-1.0000*\c},{-0.2706*\d}) --
+ ({0.0000*\c},{-0.0000*\d}) --
+ ({1.0000*\c},{0.2706*\d}) --
+ ({2.0000*\c},{0.6533*\d});
+ \draw[->] ({-2.1*\c},0) -- ({2.1*\c},0);
+ \draw[->] (0,{-1.1*\d}) -- (0,{1.1*\d});
+ \fill ({-2*\c},0) circle[radius=0.05];
+ \fill ({-1*\c},0) circle[radius=0.05];
+ \fill ({0*\c},0) circle[radius=0.05];
+ \fill ({1*\c},0) circle[radius=0.05];
+ \fill ({2*\c},0) circle[radius=0.05];
+}
+\def\vtwo{
+ \coordinate (A) at ({0*\a},0);
+ \coordinate (B) at ({1*\a},0);
+ \coordinate (C) at ({2*\a},0);
+ \coordinate (D) at ({0.5*\a},{-\b});
+ \coordinate (E) at ({1.5*\a},{-\b});
+ \draw (A) -- (B);
+ \draw (A) -- (D);
+ \draw (B) -- (C);
+ \draw (B) -- (D);
+ \draw (B) -- (E);
+ \draw (C) -- (E);
+ \draw (D) -- (E);
+ \node at (-2.8,{-0.5*\b}) [right] {$\lambda=0.3000$};
+ \fill[color=red!100] (A) circle[radius=0.25];
+ \draw (A) circle[radius=0.25];
+ \fill[color=blue!00] (B) circle[radius=0.25];
+ \draw (B) circle[radius=0.25];
+ \fill[color=red!100] (C) circle[radius=0.25];
+ \draw (C) circle[radius=0.25];
+ \fill[color=blue!100] (D) circle[radius=0.25];
+ \draw (D) circle[radius=0.25];
+ \fill[color=blue!100] (E) circle[radius=0.25];
+ \draw (E) circle[radius=0.25];
+}
+\def\ftwo{
+ \draw[color=red,line width=1.4pt]
+ ({-2.0000*\c},{0.5000*\d}) --
+ ({-1.0000*\c},{-0.5000*\d}) --
+ ({0.0000*\c},{-0.0000*\d}) --
+ ({1.0000*\c},{-0.5000*\d}) --
+ ({2.0000*\c},{0.5000*\d});
+ \draw[->] ({-2.1*\c},0) -- ({2.1*\c},0);
+ \draw[->] (0,{-1.1*\d}) -- (0,{1.1*\d});
+ \fill ({-2*\c},0) circle[radius=0.05];
+ \fill ({-1*\c},0) circle[radius=0.05];
+ \fill ({0*\c},0) circle[radius=0.05];
+ \fill ({1*\c},0) circle[radius=0.05];
+ \fill ({2*\c},0) circle[radius=0.05];
+}
+\def\vthree{
+ \coordinate (A) at ({0*\a},0);
+ \coordinate (B) at ({1*\a},0);
+ \coordinate (C) at ({2*\a},0);
+ \coordinate (D) at ({0.5*\a},{-\b});
+ \coordinate (E) at ({1.5*\a},{-\b});
+ \draw (A) -- (B);
+ \draw (A) -- (D);
+ \draw (B) -- (C);
+ \draw (B) -- (D);
+ \draw (B) -- (E);
+ \draw (C) -- (E);
+ \draw (D) -- (E);
+ \node at (-2.8,{-0.5*\b}) [right] {$\lambda=0.4414$};
+ \fill[color=red!41] (A) circle[radius=0.25];
+ \draw (A) circle[radius=0.25];
+ \fill[color=red!00] (B) circle[radius=0.25];
+ \draw (B) circle[radius=0.25];
+ \fill[color=blue!41] (C) circle[radius=0.25];
+ \draw (C) circle[radius=0.25];
+ \fill[color=blue!100] (D) circle[radius=0.25];
+ \draw (D) circle[radius=0.25];
+ \fill[color=red!100] (E) circle[radius=0.25];
+ \draw (E) circle[radius=0.25];
+}
+\def\fthree{
+ \draw[color=red,line width=1.4pt]
+ ({-2.0000*\c},{0.2706*\d}) --
+ ({-1.0000*\c},{-0.6533*\d}) --
+ ({0.0000*\c},{0.0000*\d}) --
+ ({1.0000*\c},{0.6533*\d}) --
+ ({2.0000*\c},{-0.2706*\d});
+ \draw[->] ({-2.1*\c},0) -- ({2.1*\c},0);
+ \draw[->] (0,{-1.1*\d}) -- (0,{1.1*\d});
+ \fill ({-2*\c},0) circle[radius=0.05];
+ \fill ({-1*\c},0) circle[radius=0.05];
+ \fill ({0*\c},0) circle[radius=0.05];
+ \fill ({1*\c},0) circle[radius=0.05];
+ \fill ({2*\c},0) circle[radius=0.05];
+}
+\def\vfour{
+ \coordinate (A) at ({0*\a},0);
+ \coordinate (B) at ({1*\a},0);
+ \coordinate (C) at ({2*\a},0);
+ \coordinate (D) at ({0.5*\a},{-\b});
+ \coordinate (E) at ({1.5*\a},{-\b});
+ \draw (A) -- (B);
+ \draw (A) -- (D);
+ \draw (B) -- (C);
+ \draw (B) -- (D);
+ \draw (B) -- (E);
+ \draw (C) -- (E);
+ \draw (D) -- (E);
+ \node at (-2.8,{-0.5*\b}) [right] {$\lambda=0.5000$};
+ \fill[color=red!25] (A) circle[radius=0.25];
+ \draw (A) circle[radius=0.25];
+ \fill[color=blue!100] (B) circle[radius=0.25];
+ \draw (B) circle[radius=0.25];
+ \fill[color=red!25] (C) circle[radius=0.25];
+ \draw (C) circle[radius=0.25];
+ \fill[color=red!25] (D) circle[radius=0.25];
+ \draw (D) circle[radius=0.25];
+ \fill[color=red!25] (E) circle[radius=0.25];
+ \draw (E) circle[radius=0.25];
+}
+\def\ffour{
+ \draw[color=red,line width=1.4pt]
+ ({-2.0000*\c},{0.2236*\d}) --
+ ({-1.0000*\c},{0.2236*\d}) --
+ ({0.0000*\c},{-0.8944*\d}) --
+ ({1.0000*\c},{0.2236*\d}) --
+ ({2.0000*\c},{0.2236*\d});
+ \draw[->] ({-2.1*\c},0) -- ({2.1*\c},0);
+ \draw[->] (0,{-1.1*\d}) -- (0,{1.1*\d});
+ \fill ({-2*\c},0) circle[radius=0.05];
+ \fill ({-1*\c},0) circle[radius=0.05];
+ \fill ({0*\c},0) circle[radius=0.05];
+ \fill ({1*\c},0) circle[radius=0.05];
+ \fill ({2*\c},0) circle[radius=0.05];
+}