aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--vorlesungen/slides/7/algebraisch.tex40
-rw-r--r--vorlesungen/slides/7/symmetrien.tex64
-rw-r--r--vorlesungen/slides/test.tex24
3 files changed, 75 insertions, 53 deletions
diff --git a/vorlesungen/slides/7/algebraisch.tex b/vorlesungen/slides/7/algebraisch.tex
index 5b33566..31d209a 100644
--- a/vorlesungen/slides/7/algebraisch.tex
+++ b/vorlesungen/slides/7/algebraisch.tex
@@ -19,23 +19,25 @@ Längenmessung mit Skalarprodukt
\langle \vec{v},\vec{v}\rangle
=
\vec{v}\cdot \vec{v}
-=
-\vec{v}^t\vec{v}
+\uncover<2->{=
+\vec{v}^t\vec{v}}
\end{align*}
\end{block}
\end{column}
\begin{column}{0.48\textwidth}
+\uncover<3->{%
\begin{block}{Flächeninhalt/Volumen}
$n$ Vektoren $V=(\vec{v}_1,\dots,\vec{v}_n)$
\\
Volumen des Parallelepipeds: $\det V$
-\end{block}
+\end{block}}
\end{column}
\end{columns}
%
\vspace{-7pt}
\begin{columns}[t,onlytextwidth]
\begin{column}{0.48\textwidth}
+\uncover<4->{%
\begin{block}{Längenerhaltende Transformationen}
$A\in\operatorname{GL}_n(\mathbb{R})$
\begin{align*}
@@ -44,38 +46,45 @@ $A\in\operatorname{GL}_n(\mathbb{R})$
(A\vec{x})
\cdot
(A\vec{y})
-=
+\uncover<5->{=
(A\vec{x})^t
-(A\vec{y})
+(A\vec{y})}
\\
+\uncover<6->{
\vec{x}^tI\vec{y}
&=
-\vec{x}^tA^tA\vec{y}
-\Rightarrow I=A^tA
+\vec{x}^tA^tA\vec{y}}
+\uncover<7->{
+\Rightarrow I=A^tA}
\end{align*}
-Begründung: $\vec{e}_i^t B \vec{e}_j = b_{ij}$
-\end{block}
+\uncover<8->{Begründung: $\vec{e}_i^t B \vec{e}_j = b_{ij}$}
+\end{block}}
\end{column}
\begin{column}{0.48\textwidth}
+\uncover<9->{%
\begin{block}{Volumenerhaltende Transformationen}
$A\in\operatorname{GL}_n(\mathbb{R})$
\begin{align*}
\det(V)
&=
\det(AV)
-=
-\det(A)\det(V)
+\uncover<10->{=
+\det(A)\det(V)}
\\
-1&=\det(A)
+\uncover<11->{
+1&=\det(A)}
\end{align*}
+\uncover<10->{
(Produktsatz für Determinante)
-\end{block}
+}
+\end{block}}
\end{column}
\end{columns}
%
\vspace{-3pt}
\begin{columns}[t,onlytextwidth]
\begin{column}{0.48\textwidth}
+\uncover<12->{%
\begin{block}{Orthogonale Matrizen}
Längentreue Abbildungen = orthogonale Matrizen:
\[
@@ -87,9 +96,10 @@ A \in \operatorname{GL}_n(\mathbb{R})
A^tA=I
\}
\]
-\end{block}
+\end{block}}
\end{column}
\begin{column}{0.48\textwidth}
+\uncover<13->{%
\begin{block}{``Spezielle'' Matrizen}
Volumen-/Orientierungserhaltende Transformationen:
\[
@@ -97,7 +107,7 @@ Volumen-/Orientierungserhaltende Transformationen:
=
\{ A \in \operatorname{GL}_n(\mathbb{R}) \;|\; \det A = 1\}
\]
-\end{block}
+\end{block}}
\end{column}
\end{columns}
diff --git a/vorlesungen/slides/7/symmetrien.tex b/vorlesungen/slides/7/symmetrien.tex
index 79f9ef7..35d62d8 100644
--- a/vorlesungen/slides/7/symmetrien.tex
+++ b/vorlesungen/slides/7/symmetrien.tex
@@ -14,7 +14,7 @@
\begin{column}{0.48\textwidth}
\begin{block}{Diskrete Symmetrien}
\begin{itemize}
-\item
+\item<2->
Ebenen-Spiegelung:
\[
{\tiny
@@ -22,12 +22,13 @@ Ebenen-Spiegelung:
}
\mapsto
{\tiny
-\begin{pmatrix*}[r]-x_1\\x_2\\x_3 \end{pmatrix*},
+\begin{pmatrix*}[r]-x_1\\x_2\\x_3 \end{pmatrix*}
}
-\;
+\uncover<4->{\!,\;
\vec{x}
\mapsto
\vec{x} -2 (\vec{n}\cdot\vec{x}) \vec{n}
+}
\]
\vspace{-10pt}
\begin{center}
@@ -41,34 +42,39 @@ Ebenen-Spiegelung:
\coordinate (C) at ({90+\a}:{\r*cos(90+\a-\b)});
\coordinate (N) at (\a:2);
\coordinate (D) at (\a:{\r*cos(\b-\a)});
+\uncover<3->{
\clip (-2.5,-0.45) rectangle (2.5,1.95);
-\fill[color=darkgreen!20] (O) -- ({\a-90}:0.2) arc ({\a-90}:\a:0.2) -- cycle;
-\draw[->,color=darkgreen] (O) -- (N);
-\node[color=darkgreen] at (N) [above] {$\vec{n}$};
+ \fill[color=darkgreen!20] (O) -- ({\a-90}:0.2) arc ({\a-90}:\a:0.2)
+ -- cycle;
+ \draw[->,color=darkgreen] (O) -- (N);
+ \node[color=darkgreen] at (N) [above] {$\vec{n}$};
-\fill[color=blue!20] (C) -- ($(C)+(\a:0.2)$) arc (\a:{90+\a}:0.2) -- cycle;
-\fill[color=red] (O) circle[radius=0.06];
-\draw[color=red] ({\a-90}:2) -- ({\a+90}:2);
-\fill[color=blue] (C) circle[radius=0.06];
-\draw[color=blue,line width=0.1pt] (A) -- (D);
-\node[color=darkgreen] at (D) [below,rotate=\a] {$(\vec{n}\cdot\vec{x})\vec{n}$};
-\draw[color=blue,line width=0.5pt] (A)--(B);
+ \fill[color=blue!20] (C) -- ($(C)+(\a:0.2)$) arc (\a:{90+\a}:0.2)
+ -- cycle;
+ \fill[color=red] (O) circle[radius=0.06];
+ \draw[color=red] ({\a-90}:2) -- ({\a+90}:2);
+ \fill[color=blue] (C) circle[radius=0.06];
+ \draw[color=blue,line width=0.1pt] (A) -- (D);
+ \node[color=darkgreen] at (D) [below,rotate=\a]
+ {$(\vec{n}\cdot\vec{x})\vec{n}$};
+ \draw[color=blue,line width=0.5pt] (A)--(B);
-\node[color=blue] at (A) [above right] {$\vec{x}$};
-\node[color=blue] at (B) [above left] {$\vec{x}'$};
+ \node[color=blue] at (A) [above right] {$\vec{x}$};
+ \node[color=blue] at (B) [above left] {$\vec{x}'$};
-\node[color=red] at (O) [below left] {$O$};
+ \node[color=red] at (O) [below left] {$O$};
-\draw[->,color=blue,shorten <= 0.06cm] (O) -- (A);
-\draw[->,color=blue,shorten <= 0.06cm] (O) -- (B);
+ \draw[->,color=blue,shorten <= 0.06cm,line width=1.4pt] (O) -- (A);
+ \draw[->,color=blue,shorten <= 0.06cm,line width=1.4pt] (O) -- (B);
+}
\end{tikzpicture}
\end{center}
\vspace{-5pt}
$\vec{n}$ ein Einheitsnormalenvektor auf der Ebene, $|\vec{n}|=1$
-\item
+\item<5->
Punkt-Spiegelung:
\[
{\tiny
@@ -84,13 +90,15 @@ Punkt-Spiegelung:
\end{block}
\end{column}
\begin{column}{0.48\textwidth}
+\uncover<6->{%
\begin{block}{Kontinuierliche Symmetrien}
\begin{itemize}
-\item Translation:
+\item<7-> Translation:
\(
\vec{x} \mapsto \vec{x} + \vec{t}
\)
-\item Drehung:
+\item<8-> Drehung:
+\vspace{-3pt}
\begin{center}
\begin{tikzpicture}[>=latex,thick]
\def\a{25}
@@ -103,14 +111,15 @@ Punkt-Spiegelung:
\fill[color=blue!20] (O) -- (90:\r) arc (90:{90+\a}:\r) -- cycle;
\node at ({0.5*\a}:1) {$\alpha$};
\node at ({90+0.5*\a}:1) {$\alpha$};
-\draw[->,color=blue] (O) -- (\a:2);
-\draw[->,color=darkgreen] (O) -- ({90+\a}:2);
+\draw[->,color=blue,line width=1.4pt] (O) -- (\a:2);
+\draw[->,color=darkgreen,line width=1.4pt] (O) -- ({90+\a}:2);
\end{scope}
\draw[->] (-1.1,0) -- (2.3,0) coordinate[label={$x$}];
\draw[->] (0,-0.1) -- (0,2.3) coordinate[label={right:$y$}];
\end{tikzpicture}
\end{center}
\[
+\uncover<9->{%
\begin{pmatrix}x\\y\end{pmatrix}
\mapsto
\begin{pmatrix}
@@ -118,15 +127,18 @@ Punkt-Spiegelung:
{\color{blue}\sin\alpha}&{\color{darkgreen}\phantom{-}\cos\alpha}
\end{pmatrix}
\begin{pmatrix}x\\y\end{pmatrix}
+}
\]
\end{itemize}
-\end{block}
+\end{block}}
\vspace{-10pt}
+\uncover<10->{%
\begin{block}{Definition}
Längen/Winkel bleiben erhalten
\\
-$\Rightarrow$ $\exists$ Erhaltungsgrösse
-\end{block}
+\uncover<11->{%
+$\Rightarrow$ $\exists$ Erhaltungsgrösse}
+\end{block}}
\end{column}
\end{columns}
\end{frame}
diff --git a/vorlesungen/slides/test.tex b/vorlesungen/slides/test.tex
index ee6829e..45b16d1 100644
--- a/vorlesungen/slides/test.tex
+++ b/vorlesungen/slides/test.tex
@@ -6,33 +6,33 @@
\section{Matrizen-Gruppen}
% Was sind Symmetrien
-\folie{7/symmetrien.tex}
+%\folie{7/symmetrien.tex}
% Algebraische Bedingungen für Matrixgruppen
\folie{7/algebraisch.tex}
% Parametrisierung, Beispiel SO(3)
-\folie{7/parameter.tex}
+%\folie{7/parameter.tex}
% Mannigfaltigkeiten
-\folie{7/mannigfaltigkeit.tex}
+%\folie{7/mannigfaltigkeit.tex}
% Weitere Beispiele
% SL_2(R)
-\folie{7/sl2.tex}
-\folie{7/drehung.tex}
+%\folie{7/sl2.tex}
+%\folie{7/drehung.tex}
% Semidirekte Produkte SO(2) x R^2, R^+ x R
-\folie{7/semi.tex}
+%\folie{7/semi.tex}
\section{Ableitungen}
% Kurven in einer Gruppe
-\folie{7/kurven.tex}
+%\folie{7/kurven.tex}
% Einparameter-Gruppen
-\folie{7/einparameter.tex}
+%\folie{7/einparameter.tex}
% Ableitung einer Einparameter-Gruppe
-\folie{7/ableitung.tex}
+%\folie{7/ableitung.tex}
% Lie-Algebra
-\folie{7/liealgebra.tex}
+%\folie{7/liealgebra.tex}
% Kommutator
-\folie{7/kommutator.tex}
+%\folie{7/kommutator.tex}
\section{Exponentialabbildung}
% Differentialgleichung für die Exponentialabbildung
-\folie{7/dg.tex}
+%\folie{7/dg.tex}