aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/05-zahlen/komplex.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/chapters/05-zahlen/komplex.tex')
-rw-r--r--buch/chapters/05-zahlen/komplex.tex380
1 files changed, 380 insertions, 0 deletions
diff --git a/buch/chapters/05-zahlen/komplex.tex b/buch/chapters/05-zahlen/komplex.tex
new file mode 100644
index 0000000..4ccea89
--- /dev/null
+++ b/buch/chapters/05-zahlen/komplex.tex
@@ -0,0 +1,380 @@
+%
+% komplex.tex -- komplexe Zahlen
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\section{Komplexe Zahlen
+\label{buch:section:komplexe-zahlen}}
+\rhead{Komplexe Zahlen}
+In den reellen Zahlen lassen sich viele algebraische Gleichungen lösen.
+Andere, z.~B.~die Gleichung
+\begin{equation}
+x^2+1=0,
+\label{buch:zahlen:eqn:igleichung}
+\end{equation}
+haben weiterhin keine Lösung.
+Der Grund dafür ist das Bestreben bei der Konstruktion der reellen Zahlen,
+die Ordnungsrelation zu erhalten.
+Diese ermöglicht, Näherungsintervall und Intervallschachtelungen
+zu definieren.
+
+Die Ordnungsrelation sagt aber auch, dass $x^2\ge 0$ ist für jedes
+$x\in\mathbb{R}$, so dass $x^2+1>0$ sein muss.
+Dies ist der Grund, warum die Gleichung \ref{buch:zahlen:eqn:igleichung}
+keine Lösung in $\mathbb{R}$ haben kann.
+Im Umkehrschluss folgt auch, dass eine Erweiterung der reellen Zahlen,
+in der die Gleichung \eqref{buch:zahlen:eqn:igleichung} lösbar ist,
+ohne die Ordnungsrelation auskommen muss.
+Es muss darin Zahlen geben, deren Quadrat negativ ist und der
+Grössenvergleich dieser Zahlen untereinander ist nur eingeschränkt
+möglich.
+
+\subsubsection{Imaginäre und komplexe Zahlen}
+Den reellen Zahlen fehlen also Zahlen, deren Quadrat negativ ist.
+Nach inzwischen bewährtem Muster konstruieren wird die neuen Zahlen
+daher als Paare $(a,b)$.
+Die erste Komponente soll die bekannten reellen Zahlen darstellen,
+deren Quadrat positiv ist.
+Die zweite Komponente soll für die Zahlen verwendet werden, deren Quadrat
+negativ ist.
+Die Zahl, deren Quadrat $-1$ sein soll, bezeichnen wir auch mit dem
+Paar $(0,1)$ und schreiben dafür auch $i=(0,1)$ mit $i^2=-1$.
+
+Die Rechenregeln sollen weiterhin erhalten bleiben, sie müssen daher
+wie folgt definiert werden:
+\begin{equation}
+\begin{aligned}
+(a,b) + (c,d) &= (a+c,b+d) & (a+bi) + (c+di) &= (a+c) + (b+d)i
+\\
+(a,b) \cdot (c,d) & (ad-bd, ad+bc) & (a+bi)\cdot(c+di) &= ac-bd + (ad+bc)i.
+\end{aligned}
+\label{buch:zahlen:cregeln}
+\end{equation}
+Diese Regeln ergeben sich ganz natürlich aus den Rechenregeln
+in $\mathbb{R}$ unter Berücksichtigung der Regel $i^2=-1$.
+
+Eine komplexe Zahl ist ein solches Paar, die Menge der komplexen Zahlen
+ist
+\[
+\mathbb{C}
+=
+\{a+bi\;|\;a,b\in\mathbb{R}\}
+\]
+mit den Rechenoperationen~\eqref{buch:zahlen:cregeln}.
+Die Menge $\mathbb{C}$ verhält sich daher wie eine zweidimensionaler
+reeller Vektorraum.
+
+\subsubsection{Real- und Imaginärteil}
+Ist $z=a+bi$ eine komplexe Zahl, dann heisst $a$ der Realteil $a=\Re z$
+und $b$ heisst der Imaginärteil $\Im z$.
+Real- und Imaginärteil sind lineare Abbildungen $\mathbb{C}\to\mathbb{R}$,
+sie projizieren einen Punkt auf die Koordinatenachsen, die entsprechend
+auch die reelle und die imaginäre Achse heissen.
+
+Die Multiplikation mit $i$ vertauscht Real- und Imaginärteil:
+\[
+\Re (iz)
+=
+-b
+=
+-\Im z
+\qquad\text{und}\qquad
+\Im (iz)
+=
+a
+=
+\Re z.
+\]
+Zusätzlich kehrt das Vorzeichen der einen Komponente.
+Wir kommen auf diese Eigenschaft zurück, wenn wir später in Abschnitt~XXX
+komplexe Zahlen als Matrizen beschreiben.
+
+\subsubsection{Komplexe Konjugation}
+Der komplexen Zahl $u=a+bi$ ordnen wir die sogenannte
+{\em komplex konjugierte} Zahl $\overline{z} = a-bi$.
+Mit Hilfe der komplexen Konjugation kann man den Real- und Imaginärteil
+algebraisch ausdrücken:
+\[
+\Re z
+=
+\frac{z+\overline{z}}2
+=
+\frac{a+bi+a-bi}{2}
+=
+\frac{2a}2
+=a
+\qquad\text{und}\qquad
+\Im z
+=
+\frac{z-\overline{z}}{2i}
+=
+\frac{a+bi-a+bi}{2i}
+=
+\frac{2bi}{2i}
+=
+b.
+\]
+In der Gaussschen Zahlenebene ist die komplexe Konjugation eine
+Spiegelung an der reellen Achse.
+
+\subsubsection{Betrag}
+In $\mathbb{R}$ kann man die Ordnungsrelation dazu verwenden zu entscheiden,
+ob eine Zahl $0$ ist.
+Wenn $x\ge 0$ ist und $x\le 0$, dann ist $x=0$.
+In $\mathbb{C}$ steht diese Ordnungsrelation nicht mehr zur Verfügung.
+Eine komplexe Zahl ist von $0$ verschieden, wenn die Länge des Vektors in der
+Zahlenebene verschieden von $0$ ist.
+Wir definieren daher den Betrag einer komplexen Zahl $z=a+bi$ als
+\[
+|z|^2
+=
+a^2 +b^2
+=
+(\Re z)^2 + (\Im z)^2
+\qquad\Rightarrow\qquad
+|z|
+=
+\sqrt{a^2+b^2}
+=
+\sqrt{(\Re z)^2 + (\Im z)^2}.
+\]
+Der Betrag lässt sich auch mit Hilfe der komplexen Konjugation ausdrücken,
+es ist $z\overline{z} = (a+bi)(a-bi) = a^2+abi-abi+b^2 = |z|^2$.
+Der Betrag ist immer eine reelle Zahl.
+
+\subsubsection{Division}
+Die Erweiterung zu den komplexen Zahlen muss auch die Division erhalten.
+Dies ist durchaus nicht selbstverständlich.
+Man kann zeigen, dass ein Produkt von Vektoren eines Vektorraums nur für
+einige wenige, niedrige Dimensionen überhaupt möglich ist.
+Für die Division sind die Einschränkungen noch gravierender, die einzigen
+Dimensionen $>1$, in denen ein Produkt mit einer Division definiert werden
+kann\footnote{Der Beweis dieser Aussage ist ziemlich schwierig und wurde
+erst im 20.~Jahrhundert mit Hilfe der Methoden der algebraischen Topologie
+erbracht. Eine Übersicht über den Beweis kann in Kapitel~10 von
+\cite{buch:ebbinghaus} gefunden werden.}, sind $2$, $4$ und $8$.
+Nur in Dimension $2$ ist ein kommutatives Produkt möglich, dies muss das
+Produkt der komplexen Zahlen sein.
+
+Wie berechnet man den Quotienten $\frac{z}{w}$ für zwei beliebige komplexe
+Zahlen $z=a+bi$ und $w=c+di$ mit $w\ne 0$?
+Dazu erweitert man den Bruch mit der komplex konjugierten des Nenners:
+\begin{align*}
+\frac{z}{w}
+&=
+\frac{z\overline{w}}{w\overline{w}}
+=
+\frac{z\overline{w}}{|w|^2}
+\end{align*}
+Da der Nenner $|w|^2>0$ eine reelle Zahl ist, ist die Division einfach,
+es ist die Multiplikation mit der reellen Zahl $1/|w|^2$.
+
+Wir können den Quotienten auch in Komponenten ausdrücken:
+\begin{align*}
+\frac{z}{w}
+&=
+\frac{a+bi}{c+di}
+=
+\frac{(a+bi)(c+di)}{(c+di)(c-di)}
+=
+\frac{ac-bd +(ad+bc)i}{c^2+d^2}.
+\end{align*}
+
+\subsubsection{Gausssche Zahlenebene}
+Beschränkt man die Multiplikation auf einen reellen Faktor, wird $\mathbb{C}$
+zu einem zweidimensionalen reellen Vektorraum.
+Man kann die komplexe Zahl $a+bi$ daher auch als Punkt $(a,b)$ in der
+sogenannten Gaussschen Ebene betrachten.
+Die Addition von komplexen Zahlen ist in diesem Bild die vektorielle
+Addition, die Multiplikation mit reellen Zahlen werden wir weiter unten
+genauer untersuchen müssen.
+
+\begin{figure}
+\centering
+\includegraphics{chapters/05-zahlen/images/komplex.pdf}
+\caption{Argument und Betrag einer komplexen Zahl $z=a+ib$ in der
+Gaussschen Zahlenebene
+\label{buch:zahlen:cfig}}
+\end{figure}
+Die Zahlenebene führt auf eine weitere Parametrisierung einer
+komplexen Zahl.
+Ein Punkt $z$ der Ebene kann in Polarkoordinaten auch durch den Betrag
+und den Winkel zwischen der reellen Achse und dem Radiusvektor zum Punkt
+beschrieben werden.
+
+
+\subsubsection{Geometrische Interpretation der Rechenoperationen}
+Die Addition kompelxer Zahlen wurde bereits als Vektoraddition
+in der Gausschen Zahlenebene.
+Die Multiplikation ist etwas komplizierter, wir berechnen Betrag
+und Argument von $zw$ separat.
+Für den Betrag erhalten wir
+\begin{align*}
+|zw|^2
+&=
+z\overline{z}w\overline{w}
+=
+|z|^2|w|^2
+\end{align*}
+Der Betrag des Produktes ist also das Produkt der Beträge.
+
+Für das Argument verwenden wir, dass
+\[
+\tan\operatorname{arg}z
+=
+\frac{\Im z}{\Re z}
+=
+\frac{b}{a}
+\qquad\Rightarrow\qquad
+b=a\tan\operatorname{arg}z
+\]
+und analog für $w$.
+Bei der Berechnung des Produktes behandeln wir nur den Fall $a\ne 0$
+und $c\ne 0$, was uns ermöglicht, den Bruch durch $ac$ zu kürzen:
+\begin{align*}
+\tan\arg wz
+&=
+\frac{\Im wz}{\Re wz}
+=
+\frac{ad+bc}{ac-bd}
+=
+\frac{\frac{d}{c} + \frac{b}{a}}{1-\frac{b}{a}\frac{d}{c}}
+=
+\frac{
+\tan\operatorname{arg}z+\tan\operatorname{arg}w
+}{
+1+
+\tan\operatorname{arg}z\cdot\tan\operatorname{arg}w
+}
+=
+\tan\bigl(
+\operatorname{arg}z+\operatorname{arg}w
+\bigr).
+\end{align*}
+Im letzten Schritt haben wir die Additionsformel für den Tangens verwendet.
+Daraus liest man ab, dass das Argument eines Produkts die Summe der
+Argumente ist.
+Die Multiplikation mit einer festen komplexen Zahl führt also mit der ganzen
+komplexen Ebene eine Drehstreckung durch.
+Auf diese geometrische Beschreibung der Multiplikation werden wir zurückkommen,
+wenn wir die komplexen Zahlen als Matrizen beschreiben wollen.
+
+\subsubsection{Algebraische Vollständigkeit}
+Die komplexen Zahlen $\mathbb{C}$ sind als Erweiterung von $\mathbb{R}$
+so konstruiert worden, dass die Gleichung $x^2+1=0$ eine Lösung hat.
+Etwas überraschend ist dagegen, dass in dieser Erweiterung jetzt jede
+beliebige algebraische Gleichung lösbar geworden.
+Dies ist der Inhalt des Fundamentalsatzes der Algebra.
+
+\begin{satz}[Fundamentalsatz der Algebra]
+\index{Fundamentalsatz der Algebra}%
+Jede algebraische Gleichung der Form
+\[
+p(x)=x^n + a_{n-1}x^{n-1}+a_1x+a_0=0,\qquad a_k\in\mathbb{C}
+\]
+mit komplexen Koeffizienten hat $n$ möglicherweise mit Vielfachheit
+gezähle Nullstellen $\alpha_1,\dots,\alpha_m$, d.~h.~das Polynom $p(x)$
+lässt sich in Linearfaktoren
+\[
+p(x)
+=
+(x-\alpha_1)^{k_1}(x-\alpha_2)^{k_2}\cdot\ldots\cdot(x-\alpha_m)^{k_m}
+\]
+zerlegen, wobei $k_1+k_2+\dots+k_m=n$.
+Die Zahlen $k_j$ heisst die {\em Vielfachheit} der Nullstelle $\alpha_j$.
+\end{satz}
+
+Der Fundamentalsatz der Algebra wurde erstmals von Carl Friedrich Gauss
+\index{Gauss, Carl Friedrich}%
+bewiesen.
+Seither sind viele alternative Beweise mit Methoden aus den verschiedensten
+Gebieten der Mathematik gegeben worden.
+Etwas salopp könnten man sagen, dass der Fundamentalsatz ausdrückt, dass
+die Konstruktion der Zahlensysteme mit $\mathbb{C}$ abgeschlossen ist,
+soweit damit die Lösbarkeit beliebiger Gleichungen angestrebt ist.
+
+\subsubsection{Quaternionen und Octonionen}
+Die komplexen Zahlen ermöglichen eine sehr effiziente Beschreibung
+geometrischer Abbildungen wie Translationen, Spiegelungen und
+Drehstreckungen in der Ebene.
+Es drängt sich damit die Frage auf, ob sich $\mathbb{C}$ so erweitern
+lässt, dass man damit auch Drehungen im dreidimensionalen Raum
+beschreiben könnte.
+Da Drehungen um verschiedene Achsen nicht vertauschen, kann eine solche
+Erweiterung nicht mehr kommutativ sein.
+
+William Rowan Hamilton propagierte ab 1843 eine Erweiterung von $\mathbb{C}$
+mit zwei zusätzlichen Einheiten $j$ und $k$ mit den nichtkommutativen
+Relationen
+\begin{equation}
+i^2 = j^2 = k^2 = ijk = -1.
+\label{buch:zahlen:eqn:quaternionenregeln}
+\end{equation}
+Er nannte die Menge aller Linearkombinationen
+\[
+\mathbb{H} = \{ a_0+a_1i+a_2j+a_3k\;|\; a_l\in \mathbb{R}\}
+\]
+die {\em Quaternionen}, die Einheiten $i$, $j$ und $k$ heissen auch
+\index{Quaternionen}%
+Einheitsquaternionen.
+\index{Einheitsquaternionen}%
+Konjugation, Betrag und Division können ganz ähnlich wie bei den
+komplexen Zahlen definiert werden und machen $\mathbb{H}$ zu einer
+sogenannten {\em Divisionsalgebra}.
+\index{Divisionsalgebra}%
+Alle Rechenregeln mit Ausnahme der Kommutativität der Multiplikation
+sind weiterhin gültig und durch jede von $0$ verschiedene Quaternion
+kann auch dividiert werden.
+
+Aus den Regeln für die Quadrate der Einheiten in
+\eqref{buch:zahlen:eqn:quaternionenregeln} folgt zum Beispiel
+$i^{-1}=-i$, $j^{-1}=-j$ und $k^{-1}=-k$.
+Die letzte Bedingung liefert daraus
+\[
+ijk=-1
+\qquad\Rightarrow\qquad
+\left\{
+\quad
+\begin{aligned}
+ij
+&=
+ijkk^{-1}=-1k^{-1}=k
+\\
+i^2jk&=-i=-jk
+\\
+-j^2k&=-ji=k
+\end{aligned}
+\right.
+\]
+Aus den Relationen~\eqref{buch:zahlen:eqn:quaternionenregeln}
+folgt also insbesondere auch, dass $ij=-ji$.
+Ebenso kann abgeleitet werden, dass $jk=-kj$ und $ik=-ki$.
+Man sagt, die Einheiten sind {\em antikommutativ}.
+\index{antikommutativ}%
+
+Die Beschreibung von Drehungen mit Quaternionen ist in der
+Computergraphik sehr beliebt, weil eine Quaternion mit nur vier
+Komponenten $a_0,\dots,a_3$ vollständig beschrieben ist.
+Eine Transformationsmatrix des dreidimensionalen Raumes enthält
+dagegen neun Koeffizienten, die vergleichsweise komplizierte
+Abhängigkeiten erfüllen müssen.
+Quaternionen haben auch in weiteren Gebieten interessante Anwendungen,
+zum Beispiel in der Quantenmechanik, wo antikommutierende Operatoren
+bei der Beschreibung von Fermionen eine zentrale Rolle spielen.
+
+Aus rein algebraischer Sicht kann man die Frage stellen, ob es eventuell
+auch noch grössere Divisionsalgebren gibt, die $\mathbb{H}$ erweitern.
+Tatsächlich hat Arthur Cayley 1845 eine achtdimensionale Algebra,
+die Oktonionen $\mathbb{O}$, mit vier weiteren Einheiten beschrieben.
+\index{Cayley, Arthur}%
+Allerdings sind die Oktonionen nur beschränkt praktisch anwendbar.
+Grund dafür ist die Tatsache, dass die Multiplikation in $\mathbb{O}$
+nicht mehr assoziativ ist.
+Das Produkt von mehr als zwei Faktoren aus $\mathbb{O}$ ist von der
+Reihenfolge der Ausführung der Multiplikationen abhängig.
+
+
+
+
+
+