diff options
Diffstat (limited to 'buch/chapters/05-zahlen/natuerlich.tex')
-rw-r--r-- | buch/chapters/05-zahlen/natuerlich.tex | 13 |
1 files changed, 7 insertions, 6 deletions
diff --git a/buch/chapters/05-zahlen/natuerlich.tex b/buch/chapters/05-zahlen/natuerlich.tex index 278aa5e..086658f 100644 --- a/buch/chapters/05-zahlen/natuerlich.tex +++ b/buch/chapters/05-zahlen/natuerlich.tex @@ -34,7 +34,7 @@ $n'\in \mathbb{N}$. \item Wenn zwei Zahlen $n,m\in\mathbb{N}$ den gleichen Nachfolger haben, $n'=m'$, dann sind sie gleich $n=m$. \item Enthält eine Menge $X$ die Zahl $0$ und mit jeder Zahl auch ihren -Nachfolger, dann ist $X\subset\mathbb{N}$. +Nachfolger, dann ist $X\subset\mathbb{N}$. %TODO: X = N?... \end{enumerate} \subsubsection{Addition} @@ -145,7 +145,7 @@ a\cdot(b+c) = ab+ac \qquad\text{und}\qquad (a+b)c = ac+bc \] -gilt. +gelten. Das Distributivgesetz drückt die wohlbekannte Regel des Ausmultiplizierens aus. Ein Distributivgesetz ist also grundlegend dafür, dass man mit den @@ -165,13 +165,14 @@ Lösung in $\mathbb{N}$ hat. \index{teilbar}% Jede natürlich Zahl $n$ ist durch $1$ teilbar und auch durch sich selbst, denn $n\cdot 1 = n$. -Andere Teiler sind dagegen nicht selbstverständlich, die Zahlen +Andere Teiler sind dagegen nicht selbstverständlich. +Die Zahlen \[ \mathbb{P} = -\{2,3,5,7,11,17,19,23,29,\dots\} +\{2,3,5,7,11,13,17,19,23,29,\dots\} \] -haben keine weiteren Teiler, sie heissen {\em Primzahlen}. +haben keine weiteren Teiler. Sie heissen {\em Primzahlen}. \index{Primzahl}% Die Menge der natürlichen Zahlen ist die naheliegende Arena für die Zahlentheorie. @@ -205,7 +206,7 @@ Die natürlichen Zahl sind also nacheinander die Mengen \begin{align*} 0 &= \emptyset \\ -1 &= \emptyset \cup \{\emptyset\} = \{0\} +1 &= 0 \cup \{0\} = \emptyset \cup \{0\} = \{0\} \\ 2 &= 1 \cup \{ 1\} = \{0\}\cup\{1\} = \{0,1\} \\ |