aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/05-zahlen/natuerlich.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/chapters/05-zahlen/natuerlich.tex')
-rw-r--r--buch/chapters/05-zahlen/natuerlich.tex49
1 files changed, 37 insertions, 12 deletions
diff --git a/buch/chapters/05-zahlen/natuerlich.tex b/buch/chapters/05-zahlen/natuerlich.tex
index f378aaf..8c51346 100644
--- a/buch/chapters/05-zahlen/natuerlich.tex
+++ b/buch/chapters/05-zahlen/natuerlich.tex
@@ -9,7 +9,7 @@
\rhead{Natürliche Zahlen}
Die natürlichen Zahlen sind die Zahlen, mit denen wir zählen.
\index{natürliche Zahlen}%
-\index{$\mathbb{N}$}%
+\index{N@$\mathbb{N}$}%
Sie abstrahieren das Konzept der Anzahl der Elemente einer endlichen
Menge.
Da die leere Menge keine Elemente hat, muss die Menge der natürlichen
@@ -24,22 +24,25 @@ Wir schreiben
\]
\subsubsection{Peano-Axiome}
-Man kann den Zählprozess durch die folgenden Axiome von Peano beschreiben:
+\index{Peano}%
+Man kann den Zählprozess durch die folgenden Axiome von Peano genauer fassen:
\index{Peano-Axiome}%
\begin{enumerate}
-\item $0\in\mathbb N$.
+\item $0$ ist eine natürliche Zahl: $0\in\mathbb N$.
\item Jede Zahl $n\in \mathbb{N}$ hat einen {\em Nachfolger}
$n'\in \mathbb{N}$.
\index{Nachfolger}%
\item $0$ ist nicht Nachfolger einer Zahl.
\item Wenn zwei Zahlen $n,m\in\mathbb{N}$ den gleichen Nachfolger haben,
-$n'=m'$, dann sind sie gleich $n=m$.
+$n'=m'$, dann sind sie gleich: $n=m$.
\item Enthält eine Menge $X$ die Zahl $0$ und mit jeder Zahl auch ihren
Nachfolger, dann ist $\mathbb{N}\subset X$.
\end{enumerate}
\subsubsection{Vollständige Induktion}
-Es letzte Axiom formuliert das Prinzip der vollständigen Induktion.
+Es letzte Axiom formuliert das Prinzip der {\em vollständigen Induktion}.
+\index{vollständige Induktion}%
+\index{Induktion, vollständige}%
Um eine Aussage $P(n)$ für alle natürlichen Zahlen $n$
mit vollständiger Induktion zu beweisen, bezeichnet man mit
$X$ die Menge aller Zahlen, für die $P(n)$ wahr ist.
@@ -77,11 +80,13 @@ Nach diesen Regeln ist
(((5)')')'.
\]
Dies ist genau die Art und Weise, wie kleine Kinder Rechnen lernen.
-Sie Zählen von $5$ ausgehend um $3$ weiter.
+Sie zählen von $5$ ausgehend um $3$ weiter, manchmal unter Zuhilfenahme
+ihrer Finger.
Der dritte Nachfolger von $5$ heisst üblicherweise $8$.
Die algebraische Struktur, die hier konstruiert worden ist, heisst
-eine Halbgruppe.
+ein {\em Monoid}.
+\index{Monoid}%
Allerdings kann man darin zum Beispiel nur selten Gleichungen
lösen, zum Beispiel hat $3+x=1$ keine Lösung.
Die Addition ist nicht immer umkehrbar.
@@ -142,9 +147,9 @@ a+(b+c)
\qquad\text{und}\qquad
(a\cdot b)\cdot c
=
-a\cdot (b\cdot c)
+a\cdot (b\cdot c),
\]
-dies ist das Assoziativgesetz.
+dies ist das {\em Assoziativgesetz}.
Es gestattet auch eine solche Summe oder ein solches Produkt einfach
als $a+b+c$ bzw.~$a\cdot b\cdot c$ zu schreiben, da es ja keine Rolle
spielt, in welcher Reihenfolge man die Teilprodukte berechnet.
@@ -152,10 +157,11 @@ spielt, in welcher Reihenfolge man die Teilprodukte berechnet.
Die Konstruktion der Multiplikation als iterierte Addition mit Hilfe
der Rekursionsformel \eqref{buch:zahlen:multiplikation-rekursion}
hat auch zur Folge, dass die {\em Distributivgesetze}
+\index{Distributivgesetz}%
\[
a\cdot(b+c) = ab+ac
\qquad\text{und}\qquad
-(a+b)c = ac+bc
+(a+b)\cdot c = ac+bc
\]
gelten.
Bei einem nicht-kommutativen Produkt ist es hierbei notwendig,
@@ -175,7 +181,7 @@ Sie gelten immer für Matrizen.
Die Lösbarkeit von Gleichungen der Form $ax=b$ mit $a,b\in\mathbb{N}$
gibt Anlass zum sehr nützlichen Konzept der Teilbarkeit.
\index{Teilbarkeit}%
-Die Zahl $b$ heisst teilbar durch $a$, wenn die Gleichung $ax=b$ eine
+Die Zahl $b$ heisst {\em teilbar} durch $a$, wenn die Gleichung $ax=b$ eine
Lösung in $\mathbb{N}$ hat.
\index{teilbar}%
Jede natürlich Zahl $n$ ist durch $1$ und durch sich selbst teilbar,
@@ -236,11 +242,29 @@ n+1&= n \cup \{n\} = \{0,\dots,n-1\} \cup \{n\} = \{0,1,\dots,n\}
\\
&\phantom{n}\vdots
\end{align*}
+Die Menge $n+1$ besteht also aus den $n+1$ Zahlen von $0$ bis $n$.
+
+Für spätere Verwendung in Kapitel~\ref{buch:chapter:permutationen}
+definieren wir hier auch noch eine weiter Art von Standardteilmengen
+von $\mathbb{N}$.
+
+\begin{definition}
+\label{buch:zahlen:def:[n]}
+Die Menge $[n]\subset \mathbb{N}$ ist definiert durch
+\[
+[n] = \begin{cases}
+\{1,2,\dots,n\}&\qquad \text{für $n>0$}\\
+\emptyset&\qquad\text{für $n=0$}
+\end{cases}
+\]
+\end{definition}
+
+Jede der Mengen $[n]$ hat genau $n$ Elemente: $|[n]|=n$.
\subsubsection{Natürliche Zahlen als Äquivalenzklassen}
Im vorangegangenen Abschnitt haben wir die natürlichen Zahlen aus
der leeren Menge schrittweise sozusagen ``von unten'' aufgebaut.
-Wir können aber auch eine Sicht ``von oben'' einnehmen.
+Wir können aber auch eine Sichtweise ``von oben'' einnehmen.
Dazu definieren wir, was eine endliche Menge ist und was es heisst,
dass endliche Mengen gleiche Mächtigkeit haben.
@@ -258,6 +282,7 @@ Der Vorteil dieser Definition ist, dass sie die früher definierten
natürlichen Zahlen nicht braucht, diese werden jetzt erst konstruiert.
Dazu fassen wir in der Menge aller endlichen Mengen die gleich mächtigen
Mengen zusammen, bilden also die Äquivalenzklassen der Relation $\sim$.
+\index{Aquivalenzklasse@Äquivalenzklasse}%
Der Vorteil dieser Sichtweise ist, dass die natürlichen Zahlen ganz
explizit als die Anzahlen von Elementen einer endlichen Menge entstehen.