aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/05-zahlen/reell.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/chapters/05-zahlen/reell.tex')
-rw-r--r--buch/chapters/05-zahlen/reell.tex10
1 files changed, 5 insertions, 5 deletions
diff --git a/buch/chapters/05-zahlen/reell.tex b/buch/chapters/05-zahlen/reell.tex
index 06eb7aa..7af07e8 100644
--- a/buch/chapters/05-zahlen/reell.tex
+++ b/buch/chapters/05-zahlen/reell.tex
@@ -13,7 +13,7 @@ Pythagoräern aufgefallen.
\index{Pythagoräer}
Ziel dieses Abschnitts ist, den Körper $\mathbb{Q}$ zu einem
Körper $\mathbb{R}$ zu erweitern, in dem die Gleichung
-gelöst werden kann, ohne dabei Ordnungsrelation zu zerstören, die
+gelöst werden kann, ohne dabei die Ordnungsrelation zu zerstören, die
die hilfreiche und anschauliche Vorstellung der Zahlengeraden
liefert.
\index{Zahlengerade}%
@@ -37,7 +37,7 @@ schnell, sie sind mit der sogenannten Kettenbruchentwicklung der
Zahl $\sqrt{2}$ gewonnen worden.}.
Jedes der Intervalle enthält auch das nachfolgende Intervall, und
die intervalllänge konvergiert gegen 0.
-Eine solche \emph{Intervallschachtelung} beschreibt also genau eine Zahl,
+Eine solche \emph{Intervallschachtelung} beschreibt also genau eine ``Zahl'',
\index{Intervallschachtelung}%
aber möglicherweise keine, die sich als Bruch schreiben lässt.
@@ -52,10 +52,10 @@ Das Problem dieser wohlbekannten Definition für die Konstruktion
reeller Zahle ist, dass im Falle der Folge
\[
(a_n)_{n\in\mathbb{N}}=
-(1,
+\biggl(1,
\frac75,
\frac{41}{29},
-\frac{239}{169},\dots) \to a=\sqrt{2}
+\frac{239}{169},\dots\biggr) \to a=\sqrt{2}
\]
das Objekt $a$ noch gar nicht existiert.
Es gibt keine rationale Zahl, die als Grenzwert dieser Folge dienen
@@ -71,7 +71,7 @@ Die Menge $\mathbb{R}$ der reellen Zahlen kann man auch als Menge
aller Cauchy-Folgen $(a_n)_{n\in\mathbb{N}}$, $a_n\in\mathbb{Q}$,
betrachten.
\index{Cauchy-Folge}%
-Eine Folge ist eine Cauchy-Folge, wenn es für jedes $\varepsilon>0$
+Eine Folge ist eine {\em Cauchy-Folge}, wenn es für jedes $\varepsilon>0$
eine Zahl $N(\varepsilon)$ gibt derart, dass $|a_n-a_m|<\varepsilon$
für $n,m>N(\varepsilon)$.
Ab einer geeigneten Stelle $N(\varepsilon)$ sind die Folgenglieder also