aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/05-zahlen
diff options
context:
space:
mode:
Diffstat (limited to 'buch/chapters/05-zahlen')
-rw-r--r--buch/chapters/05-zahlen/natuerlich.tex2
1 files changed, 1 insertions, 1 deletions
diff --git a/buch/chapters/05-zahlen/natuerlich.tex b/buch/chapters/05-zahlen/natuerlich.tex
index def03ac..b3098e4 100644
--- a/buch/chapters/05-zahlen/natuerlich.tex
+++ b/buch/chapters/05-zahlen/natuerlich.tex
@@ -181,7 +181,7 @@ Sie gelten immer für Matrizen.
Die Lösbarkeit von Gleichungen der Form $ax=b$ mit $a,b\in\mathbb{N}$
gibt Anlass zum sehr nützlichen Konzept der Teilbarkeit.
\index{Teilbarkeit}%
-Die Zahl $b$ heisst {\em teilbar} durch $a$, in Formeln $a\mid b$,
+Die Zahl $b$ heisst {\em teilbar} durch $a$, in Formeln $a|b$,
wenn die Gleichung $ax=b$ eine Lösung in $\mathbb{N}$ hat.
\index{teilbar}%
Jede natürlich Zahl $n$ ist durch $1$ und durch sich selbst teilbar,