diff options
Diffstat (limited to 'buch/chapters/10-vektorenmatrizen/gruppen.tex')
-rw-r--r-- | buch/chapters/10-vektorenmatrizen/gruppen.tex | 184 |
1 files changed, 182 insertions, 2 deletions
diff --git a/buch/chapters/10-vektorenmatrizen/gruppen.tex b/buch/chapters/10-vektorenmatrizen/gruppen.tex index fe77009..1f9db81 100644 --- a/buch/chapters/10-vektorenmatrizen/gruppen.tex +++ b/buch/chapters/10-vektorenmatrizen/gruppen.tex @@ -3,6 +3,186 @@ % % (c) 2021 Prof Dr Andreas Müller, Hochschule Rapeprswil % -\section{Gruppen -\label{buch:grundlagen:setion:gruppen}} +\subsection{Gruppen +\label{buch:grundlagen:subsection:gruppen}} \rhead{Gruppen} +Die kleinste sinnvolle Struktur ist die einer Gruppe. +Eine solche besteht aus einer Menge $G$ mit einer Verknüpfung, +die additiv +\begin{align*} +G\times G \to G&: (g,h) = gh +\intertext{oder multiplikativ } +G\times G \to G&: (g,h) = g+h +\end{align*} +geschrieben werden kann. +Ein Element $0\in G$ heisst {\em neutrales Element} bezüglich der additiv +geschriebenen Verknüpfung falls $0+x=x$ für alle $x\in G$. +\index{neutrales Element}% +Ein Element $e\in G$ heisst neutrales Element bezüglich der multiplikativ +geschriebneen Verknüpfung, wenn $ex=x$ für alle $x\in G$. +In den folgenden Definitionen werden wir immer die multiplikative +Schreibweise verwenden, für Fälle additiv geschriebener siehe auch die +Beispiele weiter unten. + +\begin{definition} +\index{Gruppe}% +Ein {\em Gruppe} +\index{Gruppe}% +ist eine Menge $G$ mit einer Verknüfung mit folgenden +Eigenschaften: +\begin{enumerate} +\item +Die Verknüpfung ist assoziativ: $(ab)c=a(bc)$ für alle $a,b,c\in G$. +\item +Es gibt ein neutrales Element $e\in G$ +\item +Für jedes Element $g\in G$ gibt es ein Element $h\in G$ mit +$hg=e$. +\end{enumerate} +Das Element $h$ heisst auch das Inverse Element zu $g$. +\end{definition} + +Falls nicht jedes Element invertierbar ist, aber wenigstens ein neutrales +Element vorhanden ist, spricht man von einem {\em Monoid}. +\index{Monoid}% +Hat man nur eine Verknüpfung, spricht man oft von einer {\em Halbruppe}. +\index{Halbgruppe}% + +\begin{definition} +Eine Gruppe $G$ heisst abelsch, wenn $ab=ba$ für alle $a,b\in G$. +\end{definition} + +Additiv geschrieben Gruppen werden immer als abelsch angenommen, +multiplikativ geschrieben Gruppen können abelsch oder nichtabelsch sein. + +\subsubsection{Beispiele von Gruppen} + +\begin{beispiel} +Die Menge $\mathbb{Z}$ mit der Addition ist eine additive Gruppe mit +dem neutralen Element $0$. +Das additive Inverse eines Elementes $a$ ist $-a$. +\end{beispiel} + +\begin{beispiel} +Die von Null verschiedenen Elemente $\Bbbk^*$ eines Zahlekörpers bilden +bezüglich der Multiplikation eine Gruppe mit neutralem Element $1$. +Das multiplikative Inverse eines Elementes $a\in \Bbbk$ mit $a\ne 0$ +ist $a^{-1}=\frac1{a}$. +\end{beispiel} + +\begin{beispiel} +Die Vektoren $\Bbbk^n$ bilden bezüglich der Addition eine Gruppe mit +dem Nullvektor als neutralem Element. +Betrachtet man $\Bbbk^n$ als Gruppe, verliert man die Multiplikation +mit Skalaren aus den Augen. +$\Bbbk^n$ als Gruppe zu bezeichnen ist also nicht falsch, man +verliert dadurch aber +\end{beispiel} + +\begin{beispiel} +Die Menge aller quadratischen $n\times n$-Matrizen $M_n(\Bbbk)$ ist +eine Gruppe bezüglich der Addition mit der Nullmatrix als neutralem +Element. +Bezügich der Matrizenmultiplikation ist $M_n(\Bbbk)$ aber keine +Gruppe, da sich die singulären Matrizen nicht inverieren lassen. +Die Menge der invertierbaren Matrizen +\[ +\operatorname{GL}_n(\Bbbk) += +\{ +A\in M_n(\Bbbk)\;|\; \text{$A$ invertierbar} +\} +\] +ist bezüglich der Multiplikation eine Gruppe. +Die Gruppe $\operatorname{GL}_n(\Bbbk)$ ist eine echte Teilmenge +von $M_n(\Bbbk)$, die Addition und Multiplikation führen im Allgemeinen +aus der Gruppe heraus, es gibt also keine Mögichkeit, in der Gruppe +$\operatorname{GL}_n(\Bbbk)$ diese Operationen zu verwenden. +\end{beispiel} + +\subsubsection{Einige einfache Rechenregeln in Gruppen} +Die Struktur einer Gruppe hat bereits eine Reihe von +Einschränkungen zur Folge. +Zum Beispiel sprach die Definition des neutralen Elements $e$ nur von +Produkten der Form $ex=x$, nicht von Produkten $xe$. +Und die Definition des inversen Elements $h$ von $g$ hat nur +verlangt, dass $gh=e$, es wurde nichts gesagt über das Produkt $hg$. + +\begin{satz} +\label{buch:vektorenmatrizen:satz:gruppenregeln} +Ist $G$ eine Gruppe mit neutralem Element $e$, dann gilt +\begin{enumerate} +\item +$xe=x$ für alle $x\in G$ +\item +Es gibt nur ein neutrales Element. +Wenn also $f\in G$ mit $fx=x$ für alle $x\in G$, ist dann folgt $f=e$. +\item +Wenn $hg=e$ gilt, dann auch $gh=e$ und $h$ ist durch $g$ eindeutig bestimmt. +\end{enumerate} +\end{satz} + +\begin{proof}[Beweis] +Wir beweisen als Erstes den ersten Teil der Eigenschaft~3. +Sei $h$ die Inverse von $g$, also $hg=e$. +Sei weiter $i$ die Inverse von $h$, also $ih=e$. +Damit folgt jetzt +\[ +g += +eg += +(ih)g += +i(hg) += +ie. +\] +Wende man dies auf das Produkt $gh$ an, folgt +\[ +gh += +(ie)h += +i(eh) += +ih += +e +\] +Es ist also nicht nur $hg=e$ sondern immer auch $gh=e$. + +Für eine Inverse $h$ von $g$ folgt +\[ +ge += +g(hg) += +(gh)g += +eg += +g, +\] +dies ist die Eigenschaft~1. + +Sind $f$ und $e$ neutrale Elemente, dann folgt +\[ +f = fe = e +\] +aus der Eigenschaft~1. + +Schliesslich sei $x$ ein beliebiges Inverses von $g$, dann ist +$xg=e$, dann folgt +$x=xe=x(gh)=(xg)h = eh = h$, es gibt also nur ein Inverses von $g$. +\end{proof} + +Diesem Problem sind wir zum Beispiel auch in +Abschnitt~\ref{buch:grundlagen:subsection:gleichungssyteme} +begegnet, wo wir nur gezeigt haben, dass $AA^{-1}=E$ ist. +Da aber die invertierbaren Matrizen eine Gruppe +bilden, folgt jetzt aus dem Satz automatisch, dass auch $A^{-1}A=E$. + + + + |