aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/10-vektorenmatrizen/hadamard.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/chapters/10-vektorenmatrizen/hadamard.tex')
-rw-r--r--buch/chapters/10-vektorenmatrizen/hadamard.tex70
1 files changed, 32 insertions, 38 deletions
diff --git a/buch/chapters/10-vektorenmatrizen/hadamard.tex b/buch/chapters/10-vektorenmatrizen/hadamard.tex
index 1fd0373..787b0f5 100644
--- a/buch/chapters/10-vektorenmatrizen/hadamard.tex
+++ b/buch/chapters/10-vektorenmatrizen/hadamard.tex
@@ -25,14 +25,16 @@ dies ist das Hadamard-Produkt.
\begin{definition}
Das {\em Hadamard-Produkt} zweier Matrizen
+\index{Hadamard-Produkt}%
$A,B\in M_{m\times n}(\Bbbk)$ ist definiert als die Matrix
$A\odot B$
mit den Komponenten
\[
-(A\odot B)_{ij} = (A)_{ij} (B)_{ij}.
+(A\odot B)_{i\!j} = (A)_{i\!j} (B)_{i\!j}.
\]
Wir nennen $M_{m\times n}(\Bbbk)$ mit der Multiplikation $\odot$
-auch die Hadamard-Algebra $H_{m\times n}(\Bbbk)$.
+auch die {\em Hadamard-Algebra} $H_{m\times n}(\Bbbk)$.
+\index{Hadamard-Algebra}%
\end{definition}
Dies ist jedoch nur interessant, wenn $M_{m\times n}(\Bbbk)$ mit diesem
@@ -46,30 +48,30 @@ Es gilt
\begin{align*}
A\odot(B\odot C) &= (A\odot B)\odot C
&&\Leftrightarrow&
-a_{ij}(b_{ij}c_{ij}) &= (a_{ij}b_{ij})c_{ij}
+a_{i\!j}(b_{i\!j}c_{i\!j}) &= (a_{i\!j}b_{i\!j})c_{i\!j}
\\
A\odot(B+C) &= A\odot B + A\odot C
&&\Leftrightarrow&
-a_{ij}(b_{ij}+c_{ij}) &= a_{ij}b_{ij} + a_{ij}c_{ij}
+a_{i\!j}(b_{i\!j}+c_{i\!j}) &= a_{i\!j}b_{i\!j} + a_{i\!j}c_{i\!j}
\\
(A+B)\odot C&=A\odot C+B\odot C
&&\Leftrightarrow&
-(a_{ij}+b_{ij})c_{ij}&=a_{ij}c_{ij} + b_{ij}c_{ij}
+(a_{i\!j}+b_{i\!j})c_{i\!j}&=a_{i\!j}c_{i\!j} + b_{i\!j}c_{i\!j}
\\
(\lambda A)\odot B &= \lambda (A\odot B)
&&\Leftrightarrow&
-(\lambda a_{ij})b_{ij}&=\lambda(a_{ij}b_{ij})
+(\lambda a_{i\!j})b_{i\!j}&=\lambda(a_{i\!j}b_{i\!j})
\\
A\odot(\lambda B)&=\lambda(A\odot B)
&&\Leftrightarrow&
-a_{ij}(\lambda b_{ij})&=\lambda(a_{ij}b_{ij})
+a_{i\!j}(\lambda b_{i\!j})&=\lambda(a_{i\!j}b_{i\!j})
\end{align*}
für alle $i,j$.
Das Hadamard-Produkt ist kommutativ, da die Multiplikation in $\Bbbk$
kommuativ ist.
Das Hadamard-Produkt kann auch für Matrizen mit Einträgen in einem
-Ring definiert werden, in diesem Fall ist es möglich, dass die entsehende
+Ring definiert werden, in diesem Fall ist es möglich, dass die entstehende
Algebra nicht kommutativ ist.
Die Hadamard-Algebra hat auch ein Eins-Elemente, nämlich die Matrix,
@@ -77,6 +79,7 @@ die aus lauter Einsen besteht.
\begin{definition}
Die sogenannte {\em Einsmatrix} $U$ ist die Matrix
+\index{Einsmatrix}
\[
U=\begin{pmatrix}
1&1&\dots&1\\
@@ -106,7 +109,7 @@ Auch die Hadamard-Algebra $H_{m\times n}(\Bbbk)$ kann als Funktionenalgebra
betrachtet werden.
Einer Matrix $A\in H_{m\times n}(\Bbbk)$ ordnet man die Funktion
\[
-a\colon [m]\times [n] : (i,j) \mapsto a_{ij}
+a\colon [m]\times [n] : (i,j) \mapsto a_{i\!j}
\]
zu.
Dabei gehen die Algebraoperationen von $H_{m\times n}(\Bbbk)$ über
@@ -131,7 +134,7 @@ A=\begin{pmatrix}3&4\\4&5\end{pmatrix}
B=\begin{pmatrix}-5&4\\4&-3\end{pmatrix}
\]
sind inverse Matrizen bezüglich des Matrizenproduktes, also
-$AB=E$.
+$AB=I$.
Für das Hadamard-Produkt gilt dagegen
\[
A\odot B
@@ -141,13 +144,15 @@ A\odot B
16&-15
\end{pmatrix}.
\]
-Die Inverse einer Matrix $A$ Bezüglich des Hadamard-Produktes hat
-die Einträge $a_{ij}^{-1}$.
-Die Matrix $E$ ist bezüglich des gewöhnlichen Matrizenproduktes
+Die Inverse einer Matrix $A$ bezüglich des Hadamard-Produktes hat
+die Einträge $a_{i\!j}^{-1}$.
+Die Matrix $I$ ist bezüglich des gewöhnlichen Matrizenproduktes
invertierbar, aber sie ist bezüglich des Hadamard-Produktes nicht
invertierbar.
+Umgekehrt ist die Einsmatrix $U$ invertierbar bezüglich des
+Hadamard-Produktes, aber für $n>1$ nicht für das Matrizenprodukt.
-\subsubsection{Einbettung der Hadamard-Algebra ein eine Matrizenalgebra}
+\subsubsection{Einbettung der Hadamard-Algebra in eine Matrizenalgebra}
Hadamard-Algebren können als Unteralgebren einer Matrizenalgebra
betrachtet werden.
Der Operator $\operatorname{diag}$ bildet Vektoren ab in Diagonalmatrizen
@@ -224,36 +229,32 @@ a_{nn}
Bei dieser Abbildung geht die Hadamard-Multiplikation wieder in
das gewöhnliche Matrizenprodukt über.
-% XXX Faltungsmatrizen und Fouriertheorie
-\subsubsection{Beispiel: Faltung und Fourier-Theorie}
-
-\subsection{Weitere Verknüpfungen
-\label{buch:vektorenmatrizen:subsection:weitere}}
-
\subsubsection{Transposition}
Das Hadamard-Produkt verträgt sich mit der Transposition:
+\index{Transposition}%
\[
(A\odot B)^t = A^t \odot B^t.
\]
Insbesondere ist das Hadamard-Produkt zweier symmetrischer Matrizen auch
wieder symmetrisch.
-\subsubsection{Frobeniusnorm}
+\subsubsection{Frobenius-Norm}
Das Hadamard-Produkt in der Hadamard-Algebra $H_{m\times n}(\mathbb{R})$
nimmt keine Rücksicht auf die Dimensionen einer Matrix und ist nicht
unterscheidbar von $\mathbb{R}^{m\times n}$ mit dem Hadamard-Produkt.
Daher darf auch der Begriff einer mit den algebraischen Operationen
-verträglichen Norm nicht von von den Dimensionen abhängen.
+verträglichen Norm nicht von den spezifischen Dimensionen $m$ und $n$ abhängen.
Dies führt auf die folgende Definition einer Norm.
\begin{definition}
-Die {\em Frobenius-Norm} einer Matrix $A\in H_{m\times n}\mathbb{R})$
-mit den Einträgen $(a_{ij})=A$ ist
+Die {\em Frobenius-Norm} einer Matrix $A\in H_{m\times n}(\mathbb{R})$
+\index{Frobenius-Norm}%
+mit den Einträgen $(a_{i\!j})=A$ ist
\[
\| A\|_F
=
\sqrt{
-\sum_{i,j} a_{ij}^2
+\sum_{i,j} a_{i\!j}^2
}.
\]
Das {\em Frobenius-Skalarprodukt} zweier Matrizen
@@ -262,14 +263,15 @@ ist
\[
\langle A,B\rangle_F
=
-\sum_{i,j} a_{ij} b_{ij}
+\sum_{i,j} a_{i\!j} b_{i\!j}
=
\operatorname{Spur} A^t B
\]
und es gilt $\|A\|_F = \sqrt{\langle A,A\rangle}$.
\end{definition}
-Für komplexe Matrizen muss
+Für komplexe Matrizen muss die Definition angepasst werden, damit
+das Skalarprodukt sesquilinear und positiv definit wird.
\begin{definition}
Die {\em komplexe Frobenius-Norm} einer Matrix $A\in H_{m\times n}(\mathbb{C})$
@@ -278,11 +280,11 @@ ist
\| A\|
=
\sqrt{
-\sum_{i,j} |a_{ij}|^2
+\sum_{i,j} |a_{i\!j}|^2
}
=
\sqrt{
-\sum_{i,u} \overline{a}_{ij} a_{ij}
+\sum_{i,u} \overline{a}_{i\!j} a_{i\!j}
}
\]
das {\em komplexe Frobenius-Skalarprodukt} zweier Matrizen
@@ -290,18 +292,10 @@ $A,B\in H_{m\times n}(\mathbb{C})$ ist das Produkt
\[
\langle A,B\rangle_F
=
-\sum_{i,j}\overline{a}_{ij} b_{ij}
+\sum_{i,j}\overline{a}_{i\!j} b_{i\!j}
=
\operatorname{Spur} (A^* B)
\]
und es gilt $\|A\|_F = \sqrt{\langle A,A\rangle}$.
\end{definition}
-% XXX Frobeniusnorm
-
-\subsubsection{Skalarprodukt}
-
-% XXX Skalarprodukt
-
-
-