aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/10-vektorenmatrizen/linear.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/chapters/10-vektorenmatrizen/linear.tex')
-rw-r--r--buch/chapters/10-vektorenmatrizen/linear.tex12
1 files changed, 11 insertions, 1 deletions
diff --git a/buch/chapters/10-vektorenmatrizen/linear.tex b/buch/chapters/10-vektorenmatrizen/linear.tex
index 4e3454d..23d16a8 100644
--- a/buch/chapters/10-vektorenmatrizen/linear.tex
+++ b/buch/chapters/10-vektorenmatrizen/linear.tex
@@ -590,6 +590,16 @@ die zu $A$ {\em inverse Matrix}.
\index{inverse Matrix}
Sie wird auch $C=A^{-1}$ geschrieben.
+Die Definition der inversen Matrix stellt sicher, dass $AA^{-1}=E$ gilt,
+daraus folgt aber noch nicht, dass auch $A^{-1}A=E$ ist.
+Die Eigenschaften der Matrizenmultiplikation stellen jedoch sicher,
+dass die Menge der invertierbaren Matrizen eine Struktur bilden,
+die man Gruppe nennt, die in Abschnitt~\ref{buch:grundlagen:subsection:gruppen}
+genauer untersucht wird.
+In diesem Zusammenhang wird dann auf
+Seite~\pageref{buch:vektorenmatrizen:satz:gruppenregeln}
+die Eigenschaft $A^{-1}A=E$ ganz allgemein gezeigt.
+
\subsubsection{Determinante}
%
@@ -839,7 +849,7 @@ Das Bild einer $m\times n$-Matrix $A$ ist die Menge
Zwei Vektoren $a,b\in\operatorname{im}$ haben Urbilder $u,w\in V$ mit
$f(u)=a$ und $f(w)=b$.
-Für Summe und Skalarprodukt folgt
+Für Summe und Multiplikation mit Skalaren folgt
\[
\begin{aligned}
a+b&= f(u)+f(v)=f(u+v) &&\Rightarrow a+b\in\operatorname{im}f\\