diff options
Diffstat (limited to 'buch/chapters/20-polynome/chapter.tex')
-rw-r--r-- | buch/chapters/20-polynome/chapter.tex | 13 |
1 files changed, 7 insertions, 6 deletions
diff --git a/buch/chapters/20-polynome/chapter.tex b/buch/chapters/20-polynome/chapter.tex index b044bcd..c7fc9e9 100644 --- a/buch/chapters/20-polynome/chapter.tex +++ b/buch/chapters/20-polynome/chapter.tex @@ -15,7 +15,7 @@ p(X) = a_nX^n+a_{n-1}X^{n-1} + \cdots a_2X^2 + a_1X + a_0. Ursprünglich stand das Symbol $X$ als Platzhalter für eine Zahl. Die Polynomgleichung $Y=p(X)$ drückt dann einen Zusammenhang zwischen den Grössen $X$ und $Y$ aus. -Zum Beispiel drückt +Zum Beispiel drückt \begin{equation} H = -\frac12gT^2 + v_0T +h_0 = p(T) \label{buch:eqn:polynome:beispiel} @@ -53,14 +53,14 @@ gelten. In dieser algebraischen Sichtweise können je nach den gewählten algebraischen Rechenregeln für $X$ interessante rechnerische Strukturen abgebildet werden. \index{algebraische Sichtweise}% -Ziel dieses Kapitels ist zu zeigen, wie man die Rechenregeln für $X$ +Ziel dieses Kapitels ist zu zeigen, wie man die Rechenregeln für $X$ mit Hilfe von Matrizen allgemein darstellen kann. Diese Betrachtungsweise wird später in Anwendungen ermöglichen, -handliche Realisierungen für das Rechnen mit Grössen zu finden, +handliche Realisierungen für das Rechnen mit Grössen zu finden, die polynomielle Gleichungen erfüllen. Ebenso sollen in späteren Kapiteln die Regeln \eqref{buch:eqn:polynome:basic} -erweitert werden oder abgelöst werden um weitere Anwendungen zu erschliessen. +erweitert oder abgelöst werden um weitere Anwendungen zu erschliessen. Bei der Auswahl der zusätzlichen algebraischen Regeln muss man sehr vorsichtig vorgehen. @@ -71,7 +71,7 @@ Aber auch eine Regel wie $X^2 \ge 0$, die für alle reellen Zahlen gilt, würde die Anwendungsmöglichkeiten zu stark einschränken. Es gibt zwar keine reelle Zahl, die man in das Polynom $p(X)=X^2+1$ einsetzen könnte, so dass es den Wert $0$ annimmt. -Man könnte $X$ aber als ein neues Objekt ausserhalb von $\mathbb{R}$ +Man könnte $X$ aber als ein neues Objekt ausserhalb von $\mathbb{R}$ betrachten, welches die Gleichung $X^2+1=0$ erfüllt. In den komplexen Zahlen $\mathbb{C}$ gibt es mit der imaginären Einheit $i\in\mathbb{C}$ tatsächlich ein Zahl mit der Eigenschaft @@ -80,7 +80,8 @@ verletzt. Für das Symbol $X$ sollen also die ``üblichen'' Rechenregeln gelten. Dies ist natürlich nur sinnvoll, wenn man auch mit den Koeffizienten -$a_0,\dots,a_n$ rechnen kann, sind müssen also Elemente einer +$a_0,\dots,a_n$ rechnen kann. +Sie müssen also Elemente einer algebraischen Struktur sein, in der mindestens die Addition und die Multiplikation definiert sind. Die ganzen Zahlen $\mathbb{Z}$ kommen dafür in Frage, aber auch |