aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/20-polynome/chapter.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/chapters/20-polynome/chapter.tex')
-rw-r--r--buch/chapters/20-polynome/chapter.tex14
1 files changed, 7 insertions, 7 deletions
diff --git a/buch/chapters/20-polynome/chapter.tex b/buch/chapters/20-polynome/chapter.tex
index fd72a59..19f0221 100644
--- a/buch/chapters/20-polynome/chapter.tex
+++ b/buch/chapters/20-polynome/chapter.tex
@@ -33,7 +33,7 @@ In dieser eher arithmetischen Sichtweise ist es aber eigentlich egal, dass in
\eqref{buch:eqn:polynome:polynom} nur einfache Multiplikationen und
Additionen vorkommen.
In einem Programm könnten ja auch beliebig komplizierte Operationen
-verwendet werden, warum also diese Beschränkung.
+verwendet werden, warum also diese Beschränkung?
Für die nachfolgenden Betrachtungen stellen wir uns $X$ daher nicht
mehr einfach als einen Platzhalter für eine Zahl vor, sondern als ein neues
@@ -88,7 +88,8 @@ Die ganzen Zahlen $\mathbb{Z}$ kommen dafür in Frage, aber auch
die rationalen oder reellen Zahlen $\mathbb{Q}$ und $\mathbb{R}$.
Man kann sogar noch weiter gehen: man kann als Koeffizienten auch
Vektoren oder sogar Matrizen zulassen.
-Polynome können addiert werden, indem die Koeffizienten addiert werden.
+Polynome können addiert werden, indem die Koeffizienten addiert werden,
+und sie können mit Skalaren aus dem Koeffizentenkörper multipliziert werden.
Polynome können aber auch multipliziert werden, was auf die Faltung
der Koeffizienten hinausläuft:
\begin{align}
@@ -103,15 +104,14 @@ a_{n}b_{m}X^{n+m}
+
(a_{n}b_{m-1}+a_{n-1}b_{m})X^{n+m-1}
+
-\dots
-+
-\sum_{i + j = k}a_ib_j X^k
-+
-\dots
+\ldots
+
(a_1b_0+a_0b_1)X
+
a_0b_0
+\\
+&=
+\sum_{i + j = k}a_ib_j X^k.
\label{buch:eqn:polynome:faltung}
\end{align}
Dies ist aber nur möglich, wenn die Koeffizienten selbst miteinander