diff options
Diffstat (limited to 'buch/chapters/20-polynome/definitionen.tex')
-rw-r--r-- | buch/chapters/20-polynome/definitionen.tex | 54 |
1 files changed, 27 insertions, 27 deletions
diff --git a/buch/chapters/20-polynome/definitionen.tex b/buch/chapters/20-polynome/definitionen.tex index 82356d7..4794dea 100644 --- a/buch/chapters/20-polynome/definitionen.tex +++ b/buch/chapters/20-polynome/definitionen.tex @@ -6,7 +6,7 @@ \section{Definitionen \label{buch:section:polynome:definitionen}} \rhead{Definitionen} -In diesem Abschnitt stellen wir einige grundlegende Definitionen für das +In diesem Abschnitt stellen wir einige grundlegende Definitionen für das Rechnen mit Polynomen zusammen. % @@ -26,7 +26,7 @@ unter einer ``Zahl'' vorstellen. Wir bezeichnen die Menge, aus der die ``Zahlen'' kommen können mit $R$ und nennen sie die Menge der Skalare. \index{Skalar}% -Wenn wir uns vorstellen, dass man die Elemente von $R$ an Stelle von $X$ +Wenn wir uns vorstellen, dass man die Elemente von $R$ an Stelle von $X$ in das Polynom einsetzen kann, dann muss es möglich sein, in $R$ zu Multiplizieren und zu Addieren, und es müssen die üblichen Rechenregeln der Algebra gelten, $R$ muss also ein Ring sein. @@ -44,7 +44,7 @@ R[X] p(X) = a_nX^n+a_{n-1}X^{n-1} + \dots a_1X+a_0\;|\; a_k\in R, n\in\mathbb{N} \} \] -heisst die Menge der {\em Polynome} mit Koeffizienten in $R$ +heisst die Menge der {\em Polynome} mit Koeffizienten in $R$ oder {\em Polynome über} $R$. \index{Polynome über $R$}% @@ -77,7 +77,7 @@ Ein Polynom heisst {\em normiert} oder auch {\em monisch}, wenn der höchste Koeffizient oder auch {\em Leitkoeffizient} des Polynomus $1$ ist, also $a_n=1$. \index{Leitkoeffizient}% -Wann man in $R$ durch $a_n$ dividieren kann, dann kann man aus dem Polynom +Wenn man in $R$ durch $a_n$ dividieren kann, dann kann man aus dem Polynom $p(X)=a_nX^n+\dots$ mit Leitkoeffizient $a_n$ das normierte Polynom \[ \frac{1}{a_n}p(X) = \frac{1}{a_n}(a_nX^n + \dots + a_0)= @@ -86,9 +86,8 @@ X^n + \frac{a_{n-1}}{a_n}X^{n-1} + \dots + \frac{a_0}{a_n} machen. Man sagt auch, das Polynom $p(X)$ wurde normiert. -Die Beschreibung der Rechenoperationen wird etwas verkompliziert durch -die Tatsache, zwei Polynome nicht gleich viele von $0$ verschiedene -Koeffizienten haben müssen. +Die Tatsache, dass zwei Polynome nicht gleich viele von $0$ verschiedene Koeffizienten haben müssen, +verkompliziert die Beschreibung der Rechenoperationen ein wenig. Wir werden daher im Folgenden oft für ein Polynom \[ p(X) @@ -118,7 +117,7 @@ definiert ist. Die Menge $R[X]$ aller Polynome über $R$ wird zu einem Ring, wenn man die Rechenoperationen Addition und Multiplikation so definiert, wie man das in der Schule gelernt hat. -Die Summe von zwei Polynomen +Die Summe von zwei Polynomen \begin{align*} p(X) &= a_nX^n + a_{n-1}X^{n-1} + \dots + a_1X + a_0\\ q(X) &= b_mX^m + b_{m-1}X^{m-1} + \dots + b_1X + b_0 @@ -129,7 +128,7 @@ p(X)+q(X) = \sum_{k} (a_k+b_k)X^k, \] -wobei die Summe wieder so zu interpretieren ist, über alle Terme +wobei die Summe wieder so zu interpretieren ist, über alle Terme summiert wird, für die mindestens einer der Summanden von $0$ verschieden ist. @@ -234,7 +233,7 @@ beweist \eqref{buch:eqn:polynome:gradprodukt}. Es könnte aber passieren, dass $a_nb_m=0$ ist, d.~h.~es ist durchaus möglich, dass der Grad kleiner ist. Schliesslich kann der höchsten Koeffizient von $\lambda p(X)$ nicht grösser -als der höchste Koeffizient von $p(X)$ sein, was +als der höchste Koeffizient von $p(X)$ sein, was \eqref{buch:eqn:polynome:gradskalar} beweist. \end{proof} @@ -253,7 +252,7 @@ a_nb_m = \begin{pmatrix}0&0\\0&0\end{pmatrix}. \end{equation} Diese unangehme Situation tritt immer ein, wenn es von Null verschiedene Elemente gibt, deren Produkt $0$ ist. -In Matrizenringen ist das der Normalfall, man kann diesen fall also nicht +In Matrizenringen ist das der Normalfall, man kann diesen Fall also nicht einfach ausschliessen. In den Zahlenmengen wie $\mathbb{Z}$, $\mathbb{Q}$ und $\mathbb{R}$ passiert das natürlich nie. @@ -262,13 +261,13 @@ das natürlich nie. Ein Ring $R$ heisst {\em nullteilerfrei}, wenn für zwei Elemente $a,b\in R$ aus $ab=0$ immer geschlossen werden kann, dass $a=0$ oder $b=0$. -Ein von $0$ verschiedenes Element $a\in R$ heisst ein Nullteiler, -wenn es eine $b\in R$ mit $b\ne 0$ gibt derart dass $b=0$. +Ein von $0$ verschiedenes Element $a\in R$ heisst Nullteiler, +wenn es eine $b\in R$ mit $b\ne 0$ gibt derart dass $ab=0$. \index{Nullteiler} \index{nullteilerfrei} \end{definition} -Die beiden Matrizen in +Die beiden Matrizen in \eqref{buch:eqn:definitionen:nullteilerbeispiel} sind Nullteiler im Ring $M_2(\mathbb{Z})$ der $2\times 2$-Matrizen. Der Matrizenring $M_2(\mathbb{Z})$ ist also nicht nullteilerfrei. @@ -294,17 +293,17 @@ Dann gilt \begin{proof}[Beweis] Der Fall, dass der höchste Koeffizient verschwindet, weil $a_n$, $b_m$ -und $\lambda$ Nullteiler sind, kann unter den gegebenen Voraussetzungen +oder $\lambda$ Nullteiler sind, kann unter den gegebenen Voraussetzungen nicht eintreten, daher werden die in Lemma~\ref{lemma:rechenregelnfuerpolynomgrad} gefunden Ungleichungen -exakt für Produkte exakt. +für Produkte exakt. \end{proof} Die Gleichung \eqref{buch:eqn:polynome:gradskalarexakt} kann im Fall $\lambda=0$ natürlich nicht gelten. Betrachten wir $\lambda$ wieder als ein Polynom, dann folgt aus -\eqref{buch:eqn:polynome:gradproduktexakt}, dass +\eqref{buch:eqn:polynome:gradsummeexakt}, dass \[ \begin{aligned} \lambda&\ne 0 &&\Rightarrow& \deg (\lambda p) &= \deg\lambda + \deg p = 0+\deg p @@ -312,13 +311,14 @@ Betrachten wir $\lambda$ wieder als ein Polynom, dann folgt aus \lambda&=0 &&\Rightarrow& \deg (0 p) &= \deg 0 + \deg p = \deg 0 \end{aligned} \] -Diese Gleichung kann also nur aufrechterhalten werden, wenn $\deg 0$ eine -Zahl ist mit der Eigenschaft, dass man immer noch $\deg 0$ bekommt, -wenn man irgend eine Zahl $\deg p$ hinzuaddiert. -So eine Zahl gibt es in den ganzen Zahlen nicht, wenn zu einer ganzen -Zahl eine andere ganze Zahl hinzuaddiert, ändert sich fast immer etwas. -Man muss daher $\deg 0 = -\infty$ setzen mit der Festlegung, dass -$-\infty + n = -\infty$ gilt für beliebige ganze Zahlen $n$. +Diese Gleichung kann also nur aufrechterhalten werden, wenn die ``Zahl'' $\deg 0$ die Eigenschaft besitzt, dass man immer noch $\deg 0$ bekommt, +wenn man irgend eine Zahl $\deg p$ hinzuaddiert. Wenn also +\[\deg 0 + \deg p = \deg 0 \qquad \forall \deg p \in \mathbb Z\] +gilt. +So eine Zahl gibt es in den ganzen Zahlen nicht. +Wenn man zu einer ganzen Zahl eine andere ganze Zahl hinzuaddiert, ändert sich fast immer etwas. +Man muss daher $\deg 0 = -\infty$ setzen und festlegen, dass +$-\infty + n = -\infty$ für beliebige ganze Zahlen $n$ gilt. \begin{definition} \label{buch:def:definitionen:polynomfilterung} @@ -338,18 +338,18 @@ R^{(-\infty)}[X] & \subset & R^{(0)}[X] & \subset & R^{(1)}[X] & \subset & \dots & \subset & R^{(k)}[X] & \subset - & R^{(k+1)}[x] & \subset & \dots & \subset + & R^{(k+1)}[X] & \subset & \dots & \subset & R[X]\\[3pt] \bigg\| & &\bigg\| & - &\bigg\| & & & + &\bigg\| & & & && && & & & \\[3pt] \{0\} & \subset & R & \subset - & \{ax+b\;|a,b\in R\} & \subset & \dots & + & \{a_1X+a_0\;|a_k\in R\} & \subset & \dots & \end{array} \] und ihre Vereinigung ist $R[X]$. |