aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/20-polynome/vektoren.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/chapters/20-polynome/vektoren.tex')
-rw-r--r--buch/chapters/20-polynome/vektoren.tex13
1 files changed, 7 insertions, 6 deletions
diff --git a/buch/chapters/20-polynome/vektoren.tex b/buch/chapters/20-polynome/vektoren.tex
index 535b896..9f0dee2 100644
--- a/buch/chapters/20-polynome/vektoren.tex
+++ b/buch/chapters/20-polynome/vektoren.tex
@@ -29,7 +29,7 @@ R^{n+1}.
\]
Diese Darstellung eines Polynoms gibt auch die Addition von Polynomen
und die Multiplikation von Polynomen mit Skalaren aus $R$ korrekt wieder.
-Die Abbildung von Vektoren auf Polynome
+Die Abbildung
\[
\varphi
\colon R^{n+1} \to R[X]
@@ -38,6 +38,7 @@ Die Abbildung von Vektoren auf Polynome
\mapsto
a_nX^n + a_{n-1}X^{n-1}+\dots+a_1X+a_0
\]
+von Vektoren auf Polynome
erfüllt also
\[
\varphi( \lambda a) = \lambda \varphi(a)
@@ -62,7 +63,7 @@ um Multiplikation mit Skalaren geht, ist also diese vektorielle Darstellung
mit Hilfe von $\varphi$ eine zweckmässige Darstellung.
In zwei Bereichen ist die Beschreibung von Polynomen mit Vektoren allerdings
-ungenügend: einerseits können Polynome können beliebig hohen Grad haben,
+ungenügend: einerseits können Polynome beliebig hohen Grad haben,
während Vektoren in $R^{n+1}$ höchstens $n+1$ Komponenten haben können.
Andererseits geht bei der vektoriellen Beschreibung die multiplikative
Struktur vollständig verloren.
@@ -159,12 +160,12 @@ Multiplikationsoperator
betrachten.
Diese Operatoren setzen sich zusammen zu einem Operator
\[
-{X\cdot} \colon R^\infty \to \infty,
+{X\cdot} : R^\infty \to \infty,
\]
der die Multiplikation mit $X$ beschreibt.
Ist $p(X)$ ein Polynom, dann lässt sich die Multiplikation
-in von Polynome mit $R[X]$ ebenfalls als Operator schreiben.
+von $p(X)$ mit Polynomen in $R[X]$ ebenfalls als Operator schreiben.
Die Potenz $X^k$ wirkt durch $k$-fache Iteration des Operators
$X\cdot$.
Das Polynom $p(X)$ wirkt als Linearkombination der Operatoren $(X\cdot)^k$,
@@ -174,7 +175,7 @@ in das Polynom erhalten kann:
p(X\cdot)
=
a_n(X\cdot)^n + a_{n-1}(X\cdot)^{n+1} + \dots + a_1(X\cdot) + a_0
-\colon
+:
R^\infty \to R^\infty
:
q(X)
@@ -235,7 +236,7 @@ die Beobachtung, dass sich eine ganz allgemeine Algebra
wie die der Polynome auf sehr direkte Art und Weise
abbilden lässt in eine Algebra von Matrizen auf einem
geeigneten Vektorraum.
-Im vorliegenden Fall sind das zwar ``undendliche''
+Im vorliegenden Fall sind das zwar ``unendliche''
Matrizen, in zukünftigen Beispielen werden wir das
selbe Prinzip jedoch in Aktion sehen in Situationen,
wo eine Operation auf einem endlichen Vektorraum