aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/30-endlichekoerper/wurzeln.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/chapters/30-endlichekoerper/wurzeln.tex')
-rw-r--r--buch/chapters/30-endlichekoerper/wurzeln.tex894
1 files changed, 894 insertions, 0 deletions
diff --git a/buch/chapters/30-endlichekoerper/wurzeln.tex b/buch/chapters/30-endlichekoerper/wurzeln.tex
index 9ad0800..02429dc 100644
--- a/buch/chapters/30-endlichekoerper/wurzeln.tex
+++ b/buch/chapters/30-endlichekoerper/wurzeln.tex
@@ -3,7 +3,901 @@
%
% (c) 2021 Prof Dr Andreas Müller, Hochschule Rapperswil
%
+% !TeX spellcheck = de_CH
\section{Wurzeln
\label{buch:section:wurzeln}}
\rhead{Wurzeln}
+Im Körper $\mathbb{Q}$ kann man zum Beispiel die Wurzel aus $2$ nicht
+ziehen.
+Das Problem haben wir in Abschnitt~\ref{buch:section:reelle-zahlen}
+dadurch gelöst, dass wir $\mathbb{Q}$ zu den reellen Zahlen $\mathbb{R}$
+erweitert haben.
+Es ist aber auch möglich, nur die Zahl $\sqrt{2}$ hinzuzufügen,
+so entsteht der Körper $\mathbb{Q}(\sqrt{2})$.
+Das Problem dabei ist, was denn eigentlich $\sqrt{2}$ überhaupt ist.
+Solange man die reellen Zahlen nicht hat, hat man auch $\sqrt{2}$ nicht.
+Das Problem wird akut bei den endlichen Körpern wie zum Beispiel
+$\mathbb{F}_3$,
+da man diese nicht in $\mathbb{R}$ einbetten kann, also keine
+bekannte Menge von Zahlen existiert, in der wir die Wurzel $\sqrt{2}$
+finden könnte.
+
+Im Altertum fiel dieses Problem zunächst den Pythagoreern auf.
+Wenn $\sqrt{2}$ kein Bruch ist, was ist es dann?
+Im 15.~Jahrhundert stellte sich dieses Problem bei den Versuchen, die
+kubische Gleichung allgemein zu lösen, erneut.
+Hier war es die Wurzel $\sqrt{-1}$, die den reellen Zahlen hinzuzufügen
+war.
+In $\mathbb{R}$ hat $\sqrt{-1}$ sicher keinen Platz, also wo existert
+es denn überhaupt?
+Auch der von Descartes eingeführte, eher unglückliche Begriff
+``imaginäre Zahl'' illustriert dieses Dilemma.
+
+Inzwischen hat man sich daran gewöhnt, dass man einfach ein neues Symbol
+wählt, die algebraischen Regeln postuliert, nach denen damit zu rechnen
+ist, und dann hofft oder besser beweist, dass keine Widersprüche auftreten.
+Auf diese Weise kann man einem Körper $\Bbbk$ eine beliebige
+Nullstelle $\alpha$ eines Polynoms $f\in\Bbbk[X]$ mit Koeffizienten
+in $\Bbbk$ hinzufügen und so den Körper $\Bbbk(\alpha)$ konstruieren.
+Trotzdem bleibt die Frage offen: was {\em ist} denn eigentlich $\alpha$?
+
+In diesem Abschnitt werden Wurzeln wie folgt konstruiert.
+Zunächst wird in Abschnitt~\ref{buch:subsection:koerpererweiterungen}
+gezeigt, dass man immer eine Matrix $M_\alpha$ finden kann, welche
+genau die algebraischen Eigenschaften einer Nullstelle $\alpha$ eines
+Polynoms hat.
+Die Frage ``Was ist $\alpha$?'' erhält also die Antwort ``Eine Matrix''.
+Mit diesem Bild lassen sich alle Körperoperationen realisieren, die
+Inverse kann zum Beispiel als die inverse Matrix mit dem
+Gauss-Algorithmus berechnet werden.
+In einem zweiten Schritt zeigen wir dann, dass man die Rechnung noch
+etwas vereinfachen kann, wenn man in Polynomringen arbeitet.
+Schliesslich zeigen wir dann im
+Abschnitt~\ref{buch:subsection:zerfaellungskoerper}, wie man
+den Prozess iterieren kann und so für beliebige Polynome immer einen
+Körper finden kann, der alle Nullstellen enthält.
+Wir beginnen in Abschnitt~\ref{buch:subsection:irreduziblepolynome}
+damit, die Polynome, die für die Konstruktion in Frage kommen, etwas
+genauer zu charakterisieren.
+
+\subsection{Irreduzible Polynome
+\label{buch:subsection:irreduziblepolynome}}
+Die Zahlen, die man dem Körper hinzufügen möchte, müssen Nullstellen
+eines Polynoms sein.
+Wir gehen daher davon aus, dass $f\in \Bbbk[X]$ ein Polynom mit
+Koeffizienten in $\Bbbk$ ist, dessen Nullstelle $\alpha$ hinzugefügt
+werden sollen.
+Das Ziel ist natürlich, dass diese Erweiterung vollständig beschrieben
+werden kann durch das Polynom, ganz ohne Bezug zum Beispiel auf einen
+numerischen Wert der Nullstelle, der ohnehin nur in $\mathbb{C}$ sinnvoll
+wäre.
+
+Nehmen wir jetzt an, dass sich das Polynom $f$ faktorisieren lässt.
+Dann gibt es Polynome $g,h\in\Bbbk[X]$ derart, dass $f=g\cdot h$.
+Die Polynome $g$ und $h$ haben geringeren Grad als $f$.
+Setzt man die Nullstelle $\alpha$ ein, erhält man
+$0=f(\alpha)=g(\alpha)h(\alpha)$, daher muss einer der Faktoren
+verschwinden, also $g(\alpha)=0$ oder $h(\alpha)=0$.
+Ohne Beschränkung der Allgemeinheit kann angenommen werden, dass
+$g(\alpha)=0$.
+Die Operation des Hinzufügens der Nullstelle $\alpha$ von $f$
+muss also genauso gut mit $g$ ausgeführt werden können.
+Indem wir diese Überlegung auf $g$ anwenden können wir schliessen,
+dass es ein Polynom $m\in\Bbbk[X]$ kleinstmöglichen Grades geben muss,
+welches $\alpha$ als Nullstelle hat.
+Zusätzlich kann verlangt werden, dass das Polynom normiert ist.
+
+\begin{definition}
+Ein Polynom $f\in \Bbbk[X]$ heisst {\em irreduzibel}, wenn es sich nicht
+in zwei Faktoren $g,h\in \Bbbk[X]$ mit $f=gh$ zerlegen lässt.
+\index{irreduzibles Polynom}%
+\end{definition}
+
+Für die Konstruktion des Körpers $\Bbbk(\alpha)$ muss daher ein irreduzibles
+Polynom verwendet werden.
+
+\begin{beispiel}
+Das Polynom $f(X)=X^2-2$ ist in $\mathbb{Q}[X]$, es hat die beiden
+Nullstellen $\sqrt{2}$ und $-\sqrt{2}$.
+Beide Nullstellen haben die exakt gleichen algebraischen Eigenschaften,
+sie sind mit algebraischen Mitteln nicht zu unterscheiden.
+Nur die Vergleichsrelation ermöglicht, die negative Wurzel von der
+positiven zu unterscheiden.
+Das Polynom kann in $\mathbb{Q}$ nicht faktorisiert werden, denn die
+einzig denkbare Faktorisierung ist $(X-\sqrt{2})(X+\sqrt{2})$, die
+Faktoren sind aber keine Polynome in $\mathbb{Q}[X]$.
+Also ist $f(X) = X^2 - 2$ ein irreduzibles Polynom über $\mathbb Q$.
+
+Man kann das Polynom aber auch als Polynom in $\mathbb{F}_{23}[X]$
+betrachten.
+Im Körper $\mathbb{F}_{23}$ kann man durch probieren zwei Nullstellen
+finden:
+\begin{align*}
+5^2 &= 25\equiv 2\mod 23
+\\
+\text{und}\quad
+18^2 &=324 \equiv 2 \mod 23.
+\end{align*}
+Und tatsächlich ist in $\mathbb{F}_{23}[X]$
+\[
+(X-5)(X-18) = X^2 -23X+90
+\equiv
+X^2 -2 \mod 23,
+\]
+über $\mathbb{F}_{23}$ ist das Polynom $X^2-2$ also reduzibel.
+\end{beispiel}
+
+\begin{beispiel}
+Die Zahl
+\[
+\alpha = \frac{1+i\sqrt{3}}2
+\]
+ist eine Nullstelle des Polynoms $f(X)=X^3-1\in\mathbb{Z}[X]$.
+$\alpha$ enthält aber nur Quadratwurzeln, man würde also eigentlich
+erwarten, dass $\alpha$ Nullstelle eines quadratischen Polynoms ist.
+Tatsächlich ist $f(X)$ nicht irreduzibel, es ist nämlich
+\[
+X^3-1 = (X-1)(X^2+X+1).
+\]
+Da $\alpha$ nicht Nullstelle des ersten Faktors ist, muss es Nullstelle
+des Polynoms $m(X)=X^2+X+1$ sein.
+Der zweite Faktor ist irreduzibel.
+
+Das Polynom $m(X)$ kann man aber auch als Polynom in $\mathbb{F}_7$
+ansehen.
+Dann kann man aber zwei Nullstellen finden,
+\[
+\begin{aligned}
+X&=2&&\Rightarrow& 2^2+2+1=4+2+1&\equiv 0\mod 7
+\\
+X&=4&&\Rightarrow& 4^2+4+1=16+4+1=21&\equiv 0\mod 7.
+\end{aligned}
+\]
+Dies führt auf die Faktorisierung
+\[
+(X-2)(X-4)
+\equiv
+(X+5)(X+3)
+=
+X^2+8X+15
+\equiv
+X^2+X+1\mod 7.
+\]
+Das Polynom $X^2+X+1$ ist daher über $\mathbb{F}_7$ reduzibel und
+das Polynom $X^3-1\in\mathbb{F}_7$ zerfällt daher in Linearfaktoren
+$X^3-1=(X+6)(X+3)(X+5)$.
+\end{beispiel}
+
+
+\subsection{Körpererweiterungen
+\label{buch:subsection:koerpererweiterungen}}
+Nach den Vorbereitungen von
+Abschnitt~\ref{buch:subsection:irreduziblepolynome}
+können wir jetzt definieren, wie die Körpererweiterung
+konstruiert werden soll.
+
+\subsubsection{Erweiterung mit einem irreduziblen Polynom}
+Sei $m\in\Bbbk[X]$ ein irreduzibles Polynome über $\Bbbk$ mit dem Grad
+$\deg m=n$,
+wir dürfen es als normiert annehmen und schreiben es in der Form
+\[
+m(X)
+=
+m_0+m_1X+m_2X^2 + \dots m_{n-1}X^{n-1}+X^n.
+\]
+Wir möchten den Körper $\Bbbk$ um eine Nullstelle $\alpha$ von $m$
+erweitern.
+Da es in $\Bbbk$ keine Nullstelle von $m$ gibt, konstruieren wir
+$\Bbbk(\alpha)$ auf abstrakte Weise, ganz so wie das mit der imaginären
+Einheit $i$ gemacht wurde.
+Die Zahl $\alpha$ ist damit einfach ein neues Symbol, mit dem man
+wie in der Algebra üblich rechnen kann.
+Die einzige zusätzliche Eigenschaft, die von $\alpha$ verlangt wird,
+ist dass $m(\alpha)=0$.
+Unter diesen Bedingungen können beliebige Ausdrücke der Form
+\begin{equation}
+a_0 + a_1\alpha + a_2\alpha^2 + \dots a_k\alpha^k
+\label{buch:endlichekoerper:eqn:ausdruecke}
+\end{equation}
+gebildet werden.
+Aus der Bedingung $m(\alpha)=0$ folgt aber, dass
+\begin{equation}
+\alpha^n = -m_{n-1}\alpha^{n-1} -\dots - m_2\alpha^2 - m_1\alpha - m_0.
+\label{buch:endlichekoerper:eqn:reduktion}
+\end{equation}
+Alle Potenzen mit Exponenten $\ge n$ in
+\eqref{buch:endlichekoerper:eqn:ausdruecke}
+können daher durch die rechte Seite von
+\eqref{buch:endlichekoerper:eqn:reduktion}
+ersetzt werden.
+Als Menge ist daher
+\[
+\Bbbk(\alpha)
+=
+\{
+a_0+a_1\alpha+a_2\alpha^2+\dots+a_{n-1}\alpha^{n-1}\;|\; a_i\in\Bbbk\}
+\]
+ausreichend.
+Die Addition von solchen Ausdrücken und die Multiplikation mit Skalaren
+aus $\Bbbk$ machen $\Bbbk(\alpha)\cong \Bbbk^n$ zu einem Vektorraum,
+die Operationen können auf den Koeffizienten komponentenweise ausgeführt
+werden.
+
+\subsubsection{Matrixrealisierung der Multiplikation mit $\alpha$}
+Die schwierige Operation ist die Multiplikation mit $\alpha$.
+Dazu stellen wir zusammen, wie die Multiplikation mit $\alpha$ auf den
+Basisvektoren von $\Bbbk(\alpha)$ wirkt:
+\[
+\alpha\colon
+\Bbbk^n\to\Bbbk^n
+:
+\left\{
+\begin{aligned}
+ 1 &\mapsto \alpha \\
+\alpha &\mapsto \alpha^2 \\
+\alpha^2&\mapsto \alpha^3 \\
+ &\phantom{m}\vdots\\
+\alpha^{n-2}&\mapsto \alpha^{n-1}\\
+\alpha^{n-1}&\mapsto \alpha^n = -m_0-m_1\alpha-m_2\alpha^2-\dots-m_{n-1}\alpha^{n-1}
+\end{aligned}
+\right.
+\]
+Diese lineare Abbildung hat die Matrix
+\[
+M_{\alpha}
+=
+\begin{pmatrix}
+0 & & & & &-m_0 \\
+1 & 0 & & & &-m_1 \\
+ & 1 & 0 & & &-m_2 \\
+ & & 1 &\ddots& &\vdots \\
+ & & &\ddots& 0 &-m_{n-2}\\
+ & & & & 1 &-m_{n-1}
+\end{pmatrix}.
+\]
+%TODO: Was ist hier die Aussage?
+Aufgrund der Konstruktion die Lineare Abbildung $m(M_\alpha)$,
+die man erhält, wenn
+man die Matrix $M_\alpha$ in das Polynom $m$ einsetzt, jeden Vektor
+in $\Bbbk(\alpha)$ zu Null machen.
+Als Matrix muss daher $m(M_\alpha)=0$ sein.
+Dies kann man auch mit einem Computeralgebra-System nachprüfen.
+
+\begin{beispiel}
+In einem früheren Beispiel haben wir gesehen, dass
+$\alpha=\frac12(-1+\sqrt{3})$
+eine Nullstelle des irreduziblen Polynomes $m(X)=X^2+X+1$ ist.
+Die zugehörige Matrix $M_\alpha$ ist
+\[
+M_{\alpha}
+=
+\begin{pmatrix}
+0&-1\\
+1&-1
+\end{pmatrix}
+\qquad\Rightarrow\qquad
+M_{\alpha}^2
+=
+\begin{pmatrix}
+-1& 1\\
+-1& 0
+\end{pmatrix},\quad
+M_{\alpha}^3
+=
+\begin{pmatrix}
+ 1& 0\\
+ 0& 1
+\end{pmatrix}.
+\]
+Wir können auch verifizieren, dass
+\[
+m(M_\alpha)
+=
+M_\alpha^2+M_\alpha+I
+=
+\begin{pmatrix}
+-1& 1\\
+-1& 0
+\end{pmatrix}
++
+\begin{pmatrix}
+0&-1\\
+1&-1
+\end{pmatrix}
++
+\begin{pmatrix}
+1&0\\
+0&1
+\end{pmatrix}
+=
+\begin{pmatrix}
+0&0\\
+0&0
+\end{pmatrix}.
+\]
+Die Matrix ist also eine mögliche Realisierung für das ``mysteriöse''
+Element $\alpha$.
+Es hat alle algebraischen Eigenschaften von $\alpha$.
+\end{beispiel}
+
+Die Menge $\Bbbk(\alpha)$ kann durch die Abbildung $\alpha\mapsto M_\alpha$
+mit der Menge aller Matrizen
+\[
+\Bbbk(M_\alpha)
+=
+\left\{
+\left.
+a_0I+a_1M_\alpha+a_2M_\alpha^2+\dots+a_{n-1}M_\alpha^{n-1}\;\right|\; a_i\in\Bbbk
+\right\}
+\]
+in eine Eins-zu-eins-Beziehung gebracht werden.
+Diese Abbildung ist ein Algebrahomomorphismus.
+Die Menge $\Bbbk(M_\alpha)$ ist also das Bild des
+Körpers $\Bbbk(\alpha)$ in der Matrizenalgebra $M_n(\Bbbk)$.
+
+\subsubsection{Inverse}
+Im Moment wissen wir noch nicht, wie wir $\alpha^{-1}$ berechnen sollten.
+Wir können aber auch die Matrizendarstellung verwenden.
+Für Matrizen wissen wir selbstverständlich, wie Matrizen invertiert
+werden können.
+Tatsächlich kann man die Matrix $M_\alpha$ direkt invertieren:
+\[
+M_\alpha^{-1}
+=
+\frac{1}{m_0}
+\begin{pmatrix}
+ -m_1 &m_0& & & & \\
+ -m_2 & 0 &m_0& & & \\
+ -m_3 & & 0 & m_0& & \\
+ \vdots & & &\ddots&\ddots& \\
+-m_{n-1}& 0 & 0 & & 0 &m_0\\
+ -1 & 0 & 0 & & 0 & 0
+\end{pmatrix},
+\]
+wie man durch Ausmultiplizieren überprüfen kann:
+\[
+\frac{1}{m_0}
+\begin{pmatrix}
+ -m_1 &m_0& & & & \\
+ -m_2 & 0 &m_0& & & \\
+ -m_3 & & 0 & m_0& & \\
+ \vdots & & &\ddots&\ddots& \\
+-m_{n-1}& 0 & 0 & & 0 &m_0\\
+ -1 & 0 & 0 & & 0 & 0
+\end{pmatrix}
+\begin{pmatrix}
+ 0 & & & & &-m_0 \\
+ 1 & 0 & & & &-m_1 \\
+ & 1 & 0 & & &-m_2 \\
+ & & 1 &\ddots& &\vdots \\
+ & & &\ddots& 0 &-m_{n-2}\\
+ & & & & 1 &-m_{n-1}
+\end{pmatrix}
+=
+\begin{pmatrix}
+1&0&0&\dots&0&0\\
+0&1&0&\dots&0&0\\
+0&0&1&\dots&0&0\\
+\vdots&\vdots&\vdots&\ddots&\vdots\\
+0&0&0&\dots&1&0\\
+0&0&0&\dots&0&1
+\end{pmatrix}
+\]
+Die Invertierung in $\Bbbk(M_\alpha)$ ist damit zwar geklärt, aber
+es wäre viel einfacher, wenn man die Inverse auch in $\Bbbk(\alpha)$
+bestimmen könnte.
+
+Die Potenzen von $M_\alpha^k$ haben in der ersten Spalte genau in
+Zeile $k+1$ eine $1$, alle anderen Einträge in der ersten Spalte
+sind $0$.
+Die erste Spalte eines Elementes
+$a(\alpha)=a_0+a_1\alpha+a_2\alpha^2 +a_{n-1}\alpha^{n-1}$
+besteht daher genau aus den Elementen $a_i$.
+Die Inverse des Elements $a$ kann daher wie folgt gefunden werden.
+Zunächst wird die Matrix $a(M_\alpha)$ gebildet und invertiert.
+Wir schreiben $B=a(M_\alpha)^{-1}$.
+Aus den Einträgen der ersten Spalte kann man jetzt die Koeffizienten
+\[
+b_0=(B)_{11},
+b_1=(B)_{21},
+b_2=(B)_{31},\dots,
+b_{n-1}=(B)_{n,1}
+\]
+ablesen und daraus das Element
+\[
+b(\alpha) = b_0+b_1\alpha+b_2\alpha^2 + \dots + b_{n-1}\alpha^{n-1}
+\]
+bilden.
+Da $b(M_\alpha)=B$ die inverse Matrix von $a(M_\alpha)$ ist, muss $b(\alpha)$
+das Inverse von $a(\alpha)$ sein.
+
+\begin{beispiel}
+Wir betrachten das Polynom
+\[
+m(X) = X^3 + 2X^2 + 2X + 3 \in \mathbb{F}_{7}[X],
+\]
+es ist irreduzibel.
+Sei $\alpha$ eine Nullstelle von $m$, wir suchen das inverse Element zu
+\[
+a(\alpha)=1+2\alpha+2\alpha^2\in\mathbb{F}_{7}(\alpha).
+\]
+Die Matrix $a(M_\alpha)$ bekommt die Form
+\[
+A=\begin{pmatrix}
+ 1& 1& 6\\
+ 2& 4& 5\\
+ 2& 5& 1
+\end{pmatrix}.
+\]
+Die Inverse kann man bestimmen, indem man den
+Gauss-Algorithmus in $\mathbb{F}_{7}$ durchführt.
+Die Arithmetik in $\mathbb{F}_{7}$ ist etwas ungewohnt, insbesondere
+die Pivot-Division ist etwas mühsam, daher sind in
+Abbildung~\ref{buch:endlichekoerper:fig:additionmultiplikation}
+die Additions- und Multiplikationstabellen zusammengestellt.
+\begin{figure}
+\begin{center}
+\begin{tabular}{|>{$}c<{$}|>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}|}
+\hline
++&0&1&2&3&4&5&6\\
+\hline
+0&0&1&2&3&4&5&6\\
+1&1&2&3&4&5&6&0\\
+2&2&3&4&5&6&0&1\\
+3&3&4&5&6&0&1&2\\
+4&4&5&6&0&1&2&3\\
+5&5&6&0&1&2&3&4\\
+6&6&0&1&2&3&4&5\\
+\hline
+\end{tabular}
+\qquad
+\begin{tabular}{|>{$}c<{$}|>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}|}
+\hline
+\cdot
+ &0&1&2&3&4&5&6\\
+\hline
+0&0&0&0&0&0&0&0\\
+1&0&1&2&3&4&5&6\\
+2&0&2&4&6&1&3&5\\
+3&0&3&6&2&5&1&4\\
+4&0&4&1&5&2&6&3\\
+5&0&5&3&1&6&4&2\\
+6&0&6&5&4&3&2&1\\
+\hline
+\end{tabular}
+\end{center}
+\caption{Additions- und Multiplikationstabelle für das Rechnen im
+Galois-Körper $\mathbb{F}_7$.
+Die multiplikative Inverse eines Elements in $a\in\mathbb{F}_7^*$
+findet man, indem man in der Multiplikationstabelle in der Zeile
+$a$ die Spalte mit der $1$ sucht, diese Spalte ist mit der multiplikativen
+Inversen von $a$ angeschrieben.
+\label{buch:endlichekoerper:fig:additionmultiplikation}}
+\end{figure}
+Mit dieser Rechenhilfe kann jetzt der Gaussalgorithmus leicht durchgeführt
+werden:
+\begin{align*}
+\begin{tabular}{|>{$}c<{$}>{$}c<{$}>{$}c<{$}|>{$}c<{$}>{$}c<{$}>{$}c<{$}|}
+\hline
+ 1& 1& 6& 1& 0& 0\\
+ 2& 4& 5& 0& 1& 0\\
+ 2& 5& 1& 0& 0& 1\\
+\hline
+\end{tabular}
+&\rightarrow
+\begin{tabular}{|>{$}c<{$}>{$}c<{$}>{$}c<{$}|>{$}c<{$}>{$}c<{$}>{$}c<{$}|}
+\hline
+ 1& 1& 6& 1& 0& 0\\
+ 0& 2& 0& 5& 1& 0\\
+ 0& 3& 3& 5& 0& 1\\
+\hline
+\end{tabular}
+\rightarrow
+\begin{tabular}{|>{$}c<{$}>{$}c<{$}>{$}c<{$}|>{$}c<{$}>{$}c<{$}>{$}c<{$}|}
+\hline
+ 1& 1& 6& 1& 0& 0\\
+ 0& 1& 0& 6& 4& 0\\
+ 0& 0& 3& 1& 2& 1\\
+\hline
+\end{tabular}
+\\
+&\rightarrow
+\begin{tabular}{|>{$}c<{$}>{$}c<{$}>{$}c<{$}|>{$}c<{$}>{$}c<{$}>{$}c<{$}|}
+\hline
+ 1& 1& 6& 1& 0& 0\\
+ 0& 1& 0& 6& 4& 0\\
+ 0& 0& 1& 5& 3& 5\\
+\hline
+\end{tabular}
+\\
+&\rightarrow
+\begin{tabular}{|>{$}c<{$}>{$}c<{$}>{$}c<{$}|>{$}c<{$}>{$}c<{$}>{$}c<{$}|}
+\hline
+ 1& 1& 0& 6& 3& 5\\
+ 0& 1& 0& 6& 4& 0\\
+ 0& 0& 1& 5& 3& 5\\
+\hline
+\end{tabular}
+\rightarrow
+\begin{tabular}{|>{$}c<{$}>{$}c<{$}>{$}c<{$}|>{$}c<{$}>{$}c<{$}>{$}c<{$}|}
+\hline
+ 1& 0& 0& 0& 6& 5\\
+ 0& 1& 0& 6& 4& 0\\
+ 0& 0& 1& 5& 3& 5\\
+\hline
+\end{tabular}
+\end{align*}
+Für die Durchführung braucht man die Inversen in $\mathbb{F}_7$
+der Pivot-Elemente, sie sind $2^{-1}=4$ und $3^{-1}=5$.
+Im rechten Teil des Tableau steht jetzt die inverse Matrix
+\[
+A^{-1}
+=
+B=\begin{pmatrix}
+ 0& 6& 5\\
+ 6& 4& 0\\
+ 5& 3& 5
+\end{pmatrix}.
+\]
+Daraus können wir jetzt das inverse Element
+\[
+b(\alpha) = 6\alpha+5\alpha^2
+\]
+ablesen.
+Das Produkt $b(X)\cdot a(X)$ ist
+\begin{align*}
+(1+2X+2X^2)(6X+5X^2)
+&=
+10X^4 + 22X^3 + 17X^2 + 6X
+\\
+&=
+3X^4+X^3+3X^2+6X
+\intertext{
+Diese Polynom muss jetzt mit dem Minimalpolynom $m(X)$ reduziert
+werden, wir subtrahieren dazu $3Xm(X)$ und erhalten}
+&=
+-5X^3-3X^2-3X
+\\
+&=
+2X^3+4X^2+4X
+\intertext{Die vollständige Reduktion wird erreicht, indem wir nochmals
+$2m(X)$ subtrahieren:}
+&=
+-6 \equiv 1\mod 7,
+\end{align*}
+das Element $b(\alpha)=6\alpha+5\alpha^2$ ist also das Inverse Element von
+$a(\alpha)=1+2\alpha+2\alpha^2$ in $\mathbb{F}_7(\alpha)$.
+\label{buch:endlichekoerper:beispiel:inversemitmatrix}
+\end{beispiel}
+
+Die Matrixrealisation von $\Bbbk(\alpha)$ führt also auf eine effiziente
+Berechnungsmöglichkeit für das Inverse eines Elements von $\Bbbk(\alpha)$.
+
+\subsubsection{Algebraische Konstruktion}
+Die Matrixdarstellung von $\alpha$ ermöglicht eine rein algebraische
+und für die Rechnung besser geeignete Konstruktion.
+Für jedes Polynom $f\in\Bbbk[X]$ ist $f(M_\alpha)\in M_n(\Bbbk)$.
+Dies definiert einen Homomorphismus
+\[
+\varphi\colon \Bbbk[X] \to M_n(\Bbbk) : f \mapsto f(M_\alpha).
+\]
+Wir haben früher schon gesehen, dass das Bild dieses Homomorphismus
+genau die Menge $\Bbbk(M_\alpha)$ ist.
+Allerdings ist $\varphi$ nicht injektiv, das Polynom $m$ wird zum
+Beispiel auf $\varphi(m) = m(M_\alpha) = 0$ abgebildet.
+
+Der Kern von $\varphi$ besteht aus allen Polynomen $p\in\Bbbk[X]$,
+für die $p(M_\alpha)=0$ gilt.
+Da aber alle Matrizen $E,M_\alpha,\dots,M_\alpha^{n-1}$ linear
+unabhängig sind, muss ein solches Polynom den gleichen Grad haben
+we $m$, und damit ein Vielfaches von $m$ sein.
+Der Kern besteht daher genau aus den Vielfachen von $m(X)$,
+$\ker\varphi = m(X)\Bbbk[X]$.
+
+Es ist nicht a priori klar, dass der Quotient $R/I$ für ein
+Ideal $I\subset R$ ein Körper ist.
+Hier spielt es eine Rolle, dass das von $m$ erzeugte Ideal
+maximal ist im folgenden Sinne.
+
+\begin{definition}
+Ein Ideal $I\subset R$ heisst {\em maximal}, wenn für jedes andere Ideal
+$J$ mit $I\subset J\subset R$ entweder $I=J$ oder $J=R$ gilt.
+\end{definition}
+
+\begin{beispiel}
+Die Ideale $p\mathbb{Z}\subset \mathbb{Z}$ sind maximal genau dann, wenn
+$p$ eine Primzahl ist.
+
+TODO: XXX Begründung
+\end{beispiel}
+
+\begin{satz}
+Der Ring $R/I$ ist genau dann ein Körper, wenn $I$ ein maximales Ideal ist.
+\end{satz}
+
+\begin{proof}[Beweis]
+\end{proof}
+
+Ein irreduzibles Polynom $m\in\Bbbk[X]$ erzeugt ein maximales Ideal,
+somit ist $\Bbbk[X]/m\Bbbk[X]\cong \Bbbk(M_\alpha) \cong \Bbbk(\alpha)$.
+
+\subsubsection{Reduktion modulo $m$}
+Die algebraische Konstruktion hat gezeigt, dass die arithmetischen
+Operationen im Körper $\Bbbk(\alpha)$ genau die Operationen
+in $\Bbbk[X]/m\Bbbk[X]$ sind.
+Eine Zahl in $\Bbbk(\alpha)$ wird also durch ein Polynom vom
+$n-1$ dargestellt.
+Addieren und Subtrahieren erfolgen Koeffizientenweise in $\Bbbk$.
+Bei der Multiplikation entsteht möglicherwise ein Polynom grösseren
+Grades, mit dem Polynomdivisionsalgorithmus kann der Rest bei Division
+durch $m$ ermittelt werden.
+
+\begin{beispiel}
+Das Polyonom $f=X^5+X^4+X^3+X^2+X^1+1\in\mathbb{F}_7[X]$ soll modulo
+$m(X)=X^3+2X^2+2X^2+3$ reduziert werden.
+Wir führen die Polynomdivision in $\mathbb{F}_7[X]$ durch, die
+Multiplikationstabelle von $\mathbb{F}_7$ in
+Abbildung~\ref{buch:endlichekoerper:fig:additionmultiplikation}
+ist dabei wieder hilfreich.
+\[
+\arraycolsep=1.4pt
+\begin{array}{rcrcrcrcrcrcrcrcrcrcrcrcr}
+X^5&+& X^4&+& X^3&+& X^2&+& X&+&1&:&X^3&+&2X^2&+&2X&+&3&=&X^2&+&6X&+&1\rlap{$\mathstrut=q$}\\
+\llap{$-($}X^5&+&2X^4&+&2X^3&+&3X^2\rlap{$)$}& & & & & & & & & & & & & & & & & & \\
+\cline{1-7}
+ & &6X^4&+&6X^3&+&5X^2&+& X& & & & & & & & & & & & & & & & \\
+ & &\llap{$-($}6X^4&+&5X^3&+&5X^2&+&4X\rlap{$)$}& & & & & & & & & & & & & & & & \\
+\cline{3-9}
+ & & & & X^3& & &+&4X&+&1& & & & & & & & & & & & & & \\
+ & & & &\llap{$-($}X^3&+&2X^2&+&2X&+&3\rlap{$)$}& & & & & & & & & & & & & & \\
+\cline{5-11}
+ & & & & & &5X^2&+&2X&+&5\rlap{$\mathstrut=r$}& & & & & & & & & & & & & & \\
+\end{array}
+\]
+Die Kontrolle
+\[
+\arraycolsep=1.4pt
+\begin{array}{rcrcrcrcrcrcr}
+\llap{$($}X^2&+& 6X&+& 1\rlap{$)$}&\cdot&\llap{$($} X^3&+&2X^2&+&2X&+&3\rlap{$)$}\\
+\cline{1-13}
+ & & & & & & X^3&+&2X^2&+&2X&+&3\\
+ & & & &6X^4& + &5X^3&+&5X^2&+&4X& & \\
+ & & X^5&+&2X^4& + &2X^3&+&3X^2& & & & \\
+\cline{3-13}
+ & & X^5&+& X^4& + & X^3&+&3X^2&+&6X&+&3\rlap{$\phantom{)}=q\cdot m$}\\
+ & & & & & & & &\llap{$+($}5X^2&+&2X&+&5\rlap{$)=r$}\\
+\cline{3-13}
+ & & X^5&+& X^4& + & X^3&+& X^2&+& X&+&1\\
+\cline{3-13}
+\end{array}
+\]
+zeigt $f=qm+r$ und damit die Korrektheit der Rechnung.
+\end{beispiel}
+
+Die Identität $m(\alpha)=0$ kann aber auch wie folgt interpretiert werden.
+Sei der Grad von $f$ mindestens so gross wie der von $m$, also
+$l=\deg f\ge \deg m=n$.
+Indem man mit $\alpha^{l-n}$ multipliziert, erhält man die Relation
+\[
+\alpha^l + m_{n-1}\alpha^{l-1} + m_{n-2}\alpha^{l-2}+\dots +a_1\alpha^{l-n+1} + a_0\alpha^{l-n} = 0.
+\]
+
+Ist $f_l$ der führende Koeffizient des Polynoms $f$, dann ist
+$f-f_0mX^{n-l}$ ein Polynom vom Grad $l-1$, welches modulo $m$
+mit $f$ übereinstimmt.
+Indem man dies wiederholt, kann man also die Reduktion finden, ohne
+den Polynomdivisionsalgorithmus durchzuführen.
+Man erhält auf diese Weise zwar den Quotienten $q$ nicht, aber den
+Rest $r$ kann man trotzdem bekommen.
+
+\begin{beispiel}
+Wir wenden den eben beschriebenen Algorithmus wieder auf das
+Polynom $f=X^5+X^4+X^3+X^2+X+1$ an und erhalten:
+\[
+\arraycolsep=1.4pt
+\begin{array}{rcrcrcrcrcr}
+X^5&+& X^4&+& X^3&+& X^2&+& X&+&1\\
+\llap{$-($}X^5&+&2X^4&+&2X^3&+&3X^2\rlap{$\mathstrut =X^2m)$}& & & & \\
+\cline{1-11}
+ & &6X^4&+&6X^3&+&5X^2&+& X&+&1\\
+ & &\llap{$-($}6X^4&+&5X^3&+&5X^2&+&4X\rlap{$\mathstrut =6Xm)$}& & \\
+\cline{3-11}
+ & & & & X^3& & &+&4X&+&1\\
+ & & & & \llap{$-($}X^3&+&2X^2&+&2X&+&3\rlap{$\mathstrut =m)$}\\
+\cline{5-11}
+ & & & & & &5X^2&+&2X&+&5\rlap{$\mathstrut =r$}\\
+\end{array}
+\]
+Dies ist derselbe Rest wie wir mit dem Divisionsalgorithmus
+gefunden haben.
+\end{beispiel}
+
+Diese Form des Reduktionsalgorithmus ist besonders leicht durchzuführen
+in einem Körper $\mathbb{F}_2$, da dort die Addition und die Subtraktion
+der Koeffizienten übereinstimmen.
+Die Multiplikation mit $X$ ist nichts anders als ein Shift der
+Koeffizienten.
+
+\subsubsection{Multiplikative Inverse}
+Die schwierigste Operation in $\Bbbk(\alpha)$ ist die Division.
+Wie bei der Berechnung der Inversion in einem Galois-Körper $\mathbb{F}_p$
+kann dafür der euklidische Algorithmus verwendet werden.
+Sei also $f\in\Bbbk[X]$ ein Polynom vom Grad $\deg f <\deg m$, es soll
+das multiplikative Inverse gefunden werden.
+Da $m$ ein irreduzibles Polynom ist, müssen $f$ und $m$ teilerfremd sein.
+Der euklidische Algorithmus liefert zwei Polynome $s,t\in\Bbbk[X]$ derart,
+dass
+\[
+sf+tm=1.
+\]
+Reduzieren wir modulo $m$, wird daraus $af=1$ in $\Bbbk[X]/m\Bbbk[X]$.
+Das Polynom $a$, reduziert module $m$, ist also die multiplikative
+Inverse von $f$.
+
+Bei der praktischen Durchführung des euklidischen Algorithmus ist der
+letzte Rest $r_{n-1}$ oft nicht $1$ sondern ein anderes Element von
+$\mathbb{F}_p^*$.
+Die Linearkombination von $f$ und $m$ mit den berechneten Faktoren
+$s$ und $t$ ist daher auch nicht $1$, sondern
+\[
+sf+tm=r_{n-1}.
+\]
+Da aber alle Elemente in $\mathbb{F}_p^*$ invertierbar sind, kann man
+durch $r_{n-1}$ dividieren, was
+\[
+r_{n-1}^{-1}sf+r_{n-1}^{-1}tm=1
+\]
+ergibt.
+Also ist $r_{n-1}^{-1}s$ die gesuchte Inverse in $\mathbb{F}_p(\alpha)$,
+dies passiert auch im folgenden Beispiel.
+
+\begin{beispiel}
+Auf
+Seite~\pageref{buch:endlichekoerper:beispiel:inversemitmatrix}
+haben wir die multiplikative Inverse von
+$f=2X^2+2X+1\in\mathbb{F}_7[X]/m\mathbb{F}_7[X]$
+mit $m = X^3 + 2X^2 + 2X + 3$
+mit Hilfe von Matrizen berechnet, hier soll sie jetzt nochmals
+mit dem euklidischen Algorithmus berechnet werden.
+
+Zunächst müssen wir den euklidischen Algorithmus für die beiden Polynome
+$f$ und $m$ durchführen.
+Der Quotient $m:f$ ist:
+\[
+\arraycolsep=1.4pt
+\begin{array}{rcrcrcrcrcrcrcrcr}
+ X^3&+&2X^2&+&2X&+&3&:&2X^2&+&2X&+&1&=&4X&+&4\rlap{$\mathstrut=q_0$}\\
+\llap{$-($}X^3&+& X^2&+&4X\rlap{$)$}& & & & & & & & & & & & \\ \cline{1-5}
+ & & X^2&+&5X&+&3& & & & & & & & & & \\
+ &&\llap{$-(\phantom{2}$}X^2&+& X&+&4\rlap{$)$}& & & & & & & & & & \\ \cline{3-7}
+ & & & &4X&+&6\rlap{$\mathstrut=r_0$}& & & & & & & & & &
+\end{array}
+\]
+Jetzt muss der Quotient $f:r_0$ berechnet werden:
+\[
+\arraycolsep=1.4pt
+\begin{array}{rcrcrcrcrcrcrcrcr}
+ 2X^2&+&2X&+&1&:&4X&+&6&=&4X&+&5\rlap{$\mathstrut=q_1$}\\
+\llap{$-($}2X^2&+&3X\rlap{$)$}& & & & & & & & \\ \cline{1-3}
+ & &6X&+&1& & & & & & \\
+ & &\llap{$-($}6X&+&2\rlap{$)$}& & & & & & \\ \cline{3-5}
+ & & & &6\rlap{$\mathstrut=r_1$}& & & & & & & &
+\end{array}
+\]
+Da der Rest $r_1\in\mathbb{F}_7^*$ liegt, gibt die nächste Division
+natürlich den Rest $0$ und der letzte nicht verschwindende Rest ist
+$r_{1}=6$:
+\[
+\arraycolsep=1.4pt
+\begin{array}{rcrcrcrcr}
+4X&+&6&:&6&=&3X&+&1\rlap{$\mathstrut=q_2$} \\
+\llap{$-($}4X\rlap{$)$}& & & & & & & & \\ \cline{1-1}
+ 0&+&6& & & & & & \\
+ & &\llap{$-($}6\rlap{$)$}& & & & & &\\ \cline{3-3}
+ & &0\rlap{$\mathstrut=r_2$}& & & & & &
+\end{array}
+\]
+Damit ist der euklidische Algorithmus abgeschlossen.
+
+Durch Ausmultiplizieren der Matrizen $Q(-q_i)$ können wir jetzt auch die
+Faktoren $s$ und $t$ finden.
+\begin{align*}
+Q=\begin{pmatrix}
+s&t\\
+*&*
+\end{pmatrix}
+&= Q(q_2)Q(q_1)Q(q_0)
+=
+\begin{pmatrix}0&1\\1&-q_2\end{pmatrix}
+\begin{pmatrix}0&1\\1&-q_1\end{pmatrix}
+\begin{pmatrix}0&1\\1&-q_0\end{pmatrix}
+\\
+&=
+\begin{pmatrix}
+0&1\\
+1&4X+6
+\end{pmatrix}
+\begin{pmatrix}
+0&1\\
+1&3X+2
+\end{pmatrix}
+\begin{pmatrix}
+0&1\\
+1&3X+3
+\end{pmatrix}
+\\
+&=
+\begin{pmatrix}
+0&1\\
+1&4X+6
+\end{pmatrix}
+\begin{pmatrix}
+ 1&3X+3\\
+3X+2&2X^2 + X
+\end{pmatrix}
+\\
+&=
+\begin{pmatrix}
+3X+2 &2X^2+X\\
+1+(4X+6)(3X+2) &3X+3 + (4X+6)(2X^2+X)
+\end{pmatrix}
+\\
+&=
+\begin{pmatrix}
+ 3X+2 & 2X^2 +X\\
+5X^2+5X+6 & X^3+2X^2+2X+6
+\end{pmatrix}
+\end{align*}
+Daraus liest man
+\[
+s
+=
+2X^2+X
+\qquad\text{und}\qquad
+t
+=
+3X+2
+\]
+ab.
+Wir überprüfen, ob die Koeffizienten der ersten Zeile tatsächlich $m$ und $f$
+zu $r_1=6$ kombinieren.
+Es ist
+\begin{align*}
+(3X+2)\cdot m + (2X^2+X)\cdot f
+&=
+(3X+2)
+(X^3+3X^2+X+2)
++
+(2X^2+X)
+(2X^2+2X+1)
+=
+6=r_1
+\end{align*}
+Die multiplikative Inverse ist daher
+$
+r_1^{-1}(2X^2 + X)
+=
+6^{-1}
+(2X^2 + X)
+=
+6
+(2X^2 + X)
+=
+5X^2+6X$,
+was mit dem Beispiel von
+Seite~\pageref{buch:endlichekoerper:beispiel:inversemitmatrix}
+übereinstimmt.
+\end{beispiel}
+
+Besonders einfach ist die Rechung für $\Bbbk=\mathbb{F}_2$.
+Dieser Spezialfall ist für die praktische Anwendung in der Kryptographie
+von besonderer Bedeutung, daher wird er im
+In Kapitel~\ref{buch:chapter:kryptographie} genauer untersucht.
+
+\subsection{Zerfällungskörper
+\label{buch:subsection:zerfaellungskoerper}}
+XXX TODO
+
+
+