diff options
Diffstat (limited to 'buch/chapters/40-eigenwerte/normalformen.tex')
-rw-r--r-- | buch/chapters/40-eigenwerte/normalformen.tex | 8 |
1 files changed, 4 insertions, 4 deletions
diff --git a/buch/chapters/40-eigenwerte/normalformen.tex b/buch/chapters/40-eigenwerte/normalformen.tex index 536fa7d..c21c403 100644 --- a/buch/chapters/40-eigenwerte/normalformen.tex +++ b/buch/chapters/40-eigenwerte/normalformen.tex @@ -24,7 +24,7 @@ Polynom in Linearfaktoren = (x-\lambda_1)^{k_1}\cdot (x-\lambda_2)^{k_2}\cdot\dots\cdot (x-\lambda_m)^{k_m} \] -mit Vielfachheiten $k_m$ zerfällt, $\lambda_i\in\Bbbk'$. +mit Vielfachheiten $k_1$ bis $k_m$ zerfällt, $\lambda_i\in\Bbbk'$. Zu jedem Eigenwert $\lambda_i$ gibt es sicher einen Eigenvektor, wir wollen aber in diesem Abschnitt zusätzlich annehmen, dass es eine Basis aus Eigenvektoren gibt. @@ -101,7 +101,7 @@ Nach Satz~\ref{buch:eigenwerte:satz:zerlegung-in-eigenraeume} liefern die verallgemeinerten Eigenräume $V_i=\mathcal{E}_{\lambda_i}(A)$ eine Zerlegung von $V$ in invariante Eigenräume \[ -V=V_1\oplus V_2\oplus \oplus \dots\oplus V_l, +V=V_1\oplus V_2\oplus \dots\oplus V_l, \] derart, dass $A-\lambda_iE$ auf $V_i$ nilpotent ist. Wählt man in jedem der Unterräume $V_i$ eine Basis, dann zerfällt die @@ -239,7 +239,7 @@ charakteristischen Polynom $\chi_A(x)$. -\begin{satz}[Cayley-Hamilton]] +\begin{satz}[Cayley-Hamilton] Ist $A$ eine $n\times n$-Matrix über dem Körper $\Bbbk$, dann gilt $\chi_A(A)=0$. \end{satz} @@ -254,7 +254,7 @@ $\chi_A(x) \dots (\lambda_p-x)^{m_p}$ zerfällt. -Im Vektorraum $\Bbbk''$ kann man eine Basis finden, in der die Matrix +Im Vektorraum $\Bbbk'$ kann man eine Basis finden, in der die Matrix $A$ in Jordan-Matrizen $J_1,\dots,J_p$ zerfällt, wobei $J_i$ eine $m_i\times m_i$-Matrix ist. Für den Block mit der Nummer $i$ erhalten wir |