diff options
Diffstat (limited to 'buch/chapters/40-eigenwerte/spektraltheorie.tex')
-rw-r--r-- | buch/chapters/40-eigenwerte/spektraltheorie.tex | 213 |
1 files changed, 205 insertions, 8 deletions
diff --git a/buch/chapters/40-eigenwerte/spektraltheorie.tex b/buch/chapters/40-eigenwerte/spektraltheorie.tex index a3f86ba..4bf5c42 100644 --- a/buch/chapters/40-eigenwerte/spektraltheorie.tex +++ b/buch/chapters/40-eigenwerte/spektraltheorie.tex @@ -276,6 +276,25 @@ ergibt, dass jede beliebige Funktion sich als Polynome in $x$ approximieren lässt. Dies ist der Inhalt des folgenden Satzes von Stone-Weierstrass. +\begin{figure} +\centering +\includegraphics{chapters/40-eigenwerte/images/wurzel.pdf} +\caption{Konstruktion einer monoton wachsenden Approximationsfolge für +$\sqrt{a}$ +\label{buch:eigenwerte:fig:wurzelverfahren}} +\end{figure} + +\begin{figure} +\centering +\includegraphics[width=\textwidth]{chapters/40-eigenwerte/images/wurzelapprox.pdf} +\caption{Monoton wachsende Approximation der Funktion $t\mapsto\sqrt{t}$ mit +Polynomen $u_n(t)$ nach +\eqref{buch:eigenwerte:eqn:wurzelapproximation} +(links) und der Fehler der Approximation +(rechts). +\label{buch:eigenwerte:fig:wurzelapproximation}} +\end{figure} + \begin{satz}[Stone-Weierstrass] \label{buch:satz:stone-weierstrass} Enthält eine $\mathbb{R}$-Algebra $A$ von stetigen, rellen Funktionen @@ -286,12 +305,137 @@ reelle Funktion auf $K$ gleichmässig approximierbar durch Funktionen in $A$. \end{satz} +Für den Beweis des Satzes wird ein Hilfsresultat benötigt, welches wir +zunächst ableiten. +Es besagt, dass sich die Wurzelfunktion $t\mapsto\sqrt{t}$ +auf dem Interval $[0,1]$ gleichmässig +von unten durch Polynome approximieren lässt, die in +Abbildung~\ref{buch:eigenwerte:fig:wurzelapproximation} dargestellt +sind. + +\begin{satz} +Die rekursiv definierte Folge von Polynomen +\begin{equation} +u_{n+1}(t) += +u_n(t) + \frac12(t-u_n(t)^2), +\qquad +u_0(t)=0 +\label{buch:eigenwerte:eqn:wurzelapproximation} +\end{equation} +ist monoton wachsend und approximiert die Wurzelfunktion $t\mapsto\sqrt{t}$ +gleichmässig auf dem Intervall $[0,1]$. +\end{satz} + \begin{proof}[Beweis] -XXX TODO +Wer konstruieren zunächst das in +Abbildung~\ref{buch:eigenwerte:fig:wurzelverfahren} +visualierte Verfahren, mit dem für jede Zahl $a\in[0,1]$ +die Wurzel $\sqrt{a}$ berechnet werden kann. +Sei $u < \sqrt{a}$ eine Approximation der Wurzel. +Die Approximation ist der exakte Wert der Lösung, wenn $a-u^2=0$. +In jedem anderen Fall muss $u$ um einen Betrag $d$ vergrössert werden. +Natürlich muss immer noch $u+d<\sqrt{a}$ sein. +Man kann die maximal zulässige Korrektur $d$ geometrisch abschätzen, +wie dies in Abbildung~\ref{buch:eigenwerte:fig:wurzelverfahren} +skizziert ist. +Die maximale Steigung des Graphen der Funktion $u\mapsto u^2$ ist $2$, +daher darf man $u$ maximal um die Hälfte der Differenz $a-u^2$ (grün) +vergrössern, also $d=\frac12(a-u^2)$. +Die Rekursionsformel +\[ +u_{n+1} = u_n + d = u_n + \frac12(a-u_n^2) +\] +mit dem Startwert $u_0=0$ liefert daher eine +Folge, die gegen $\sqrt{a}$ konvergiert. \end{proof} -Der entscheidende Schritt des Beweises ist, dass man die Betragsfunktion -konstruieren kann. +\begin{proof}[Beweis des Satzes von Stone-Weierstrass] +Da $A$ eine Algebra ist, ist mit jeder Funktion $f\in A$ für jedes Polynome +$p\in\mathbb{R}[X]$ auch $p(f)$ eine Funktion in $A$. +\begin{enumerate} +\item Schritt: Für jede Funktion $f\in A$ lässt sich auch $|f|$ durch +Funktionen in $A$ beliebig genau durch eine monoton wachsende Folge +von Funktionen approximieren. + +Da $A$ eine Algebra ist, ist $f^2\in A$. +Sei ausserdem $m^2=\sup \{f(x)^2\;|\;x\in K\}$, so dass $f^2/m^2$ eine Funktion +mit Werten im Intervall $[0,1]$ ist. +Die Funktionen $f_n(x)=mu_n(f(x)^2/m^2)$ sind ebenfalls in $A$ und +approximieren gleichmässig $\sqrt{f(x)^2}=|f(x)|$. +\item Schritt: Für zwei Funktionen $f,g\in A$ gibt es eine monoton wachsende +Folge, die $\max(f,g)$ gleichmässig beliebig genau approximiert +und eine monoton fallende Folge, die $\min(f,g)$ gleichmässig beliebig +genau approximiert. + +Diese Folgen können aus der Approximationsfolge für den Betrag einer +Funktion und den Identitäten +\begin{align*} +\max(f,g) &= \frac12(f+g+|f-g|) \\ +\min(f,g) &= \frac12(f+g-|f-g|) +\end{align*} +gefunden werden. +\item Schritt: Zu zwei beliebigen Punkten $x,y\in K$ und Werten +$\alpha,\beta\in\mathbb{R}$ gibt es immer eine Funktion in $A$, +die in den Punkten $x,y$ die vorgegebenen Werte $\alpha$ bzw.~$\beta$ +annimmt. +Da $A$ die Punkte trennt, gibt es eine Funktion $f_0$ mit $f_0(x)\ne f_0(y)$. +Dann ist die Funktion +\[ +f(t) += +\beta + \frac{f_0(t)-f_0(y)}{f_0(x)-f_0(y)}(\alpha-\beta) +\] +wohldefiniert und nimmt die verlangten Werte an. +\item Schritt: Zu jeder stetigen Funktion $f\colon K\to\mathbb{R}$, jedem +Punkt $x\in K$ und jedem $\varepsilon>0$ gibt es eine Funktion $g\in A$ derart, +dass $g(x)=f(x)$ und $g(y) \le f(y)+\varepsilon$ für alle $y\in K$. + +Zu jedem $z\in K$ gibt es eine Funktion in $A$ mit +$h_z(x)=f(x)$ und $h_z(z) \le f(z)+\frac12\varepsilon$. +Wegen der Stetigkeit von $h_z$ gibt es eine Umgebung $V_z$ von $z$, in der +immer noch gilt $h_z(y)\le f(y)+\varepsilon$ für $y\in V_z$. +Wegen der Kompaktheit von $K$ kann man endlich viele Punkte $z_i$ wählen +derart, dass die $V_{z_i}$ immer noch $K$ überdecken. +Dann erfüllt die Funktion +\( +g(z) = \inf h_{z_i} +\) +die Bedingungen $g(x) = f(x)$ und für $z\in V_{z_i}$ +\[ +g(z) = \inf_{j} h_{z_j}(z) \le h_{z_i}(z) \le f(z)+\varepsilon. +\] +Ausserdem ist $g(z)$ nach dem zweiten Schritt beliebig genau durch +Funktionen in $A$ approximierbar. +\item Schritt: Jede stetige Funktion $f\colon K\to\mathbb{R}$ kann +beliebig genau durch Funktionen in $A$ approximiert werden. +Sei $\varepsilon > 0$. + +Nach dem vierten Schritt gibt es für jedes $y\in K$ eine Funktion $g_y$ +derart, dass $g_y(y)=f(y)$ und $g_y(x) \le f(x) + \varepsilon$ für +$x\in K$. +Da $g_y$ stetig ist, gilt ausserdem $g_y(x) \ge f(x) -\varepsilon$ in +einer Umgebung $U_y$ von $y$. +Da $K$ kompakt ist, kann man endlich viele $y_i$ derart, dass die $U_{y_i}$ +immer noch ganz $K$ überdecken. +Die Funktion $g=\sup g_{y_i}$ erfüllt dann überall $g(x) \le f(x)+\varepsilon$, +weil jede der Funktionen $g_y$ diese Ungleichung erfüllt. +Ausserdem gilt für $x\in V_{x_j}$ +\[ +g(x) = \sup_i g_{x_i}(x) \ge g_{x_j}(x) \ge f(x)-\varepsilon. +\] +Somit ist +\[ +|f(x)-g(x)| \le \varepsilon. +\] +Damit ist $f(x)$ beliebig nahe an der Funktion $g(x)$, die sich +beliebig genau durch Funktionen aus $A$ approximieren lässt. +\qedhere +\end{enumerate} +\end{proof} + +Im ersten Schritt des Beweises ist ganz entscheidend, dass man die +Betragsfunktion konstruieren kann. Daraus leiten sich dann alle folgenden Konstruktionen ab. \subsubsection{Anwendung auf symmetrische und hermitesche Matrizen} @@ -347,13 +491,66 @@ Folge $p_n(A)$ für Polynomfolgen, die $\operatorname{Sp}(A)$ gleichmässig gegen $f$ konvergieren. \end{satz} -\subsubsection{Der Satz von Stone-Weierstrass für komplexe Funktionen} +\subsubsection{Unmöglichkeit der Approximation von $z\mapsto \overline{z}$ +in $\mathbb{C}[z]$} Der Satz~\ref{buch:satz:stone-weierstrass} von Stone-Weierstrass für reelle Funktionen gilt nicht für komplexe Funktionen. -Der Grund ist, dass im Beweis benötigt wird, dass man den Betrag -einer Funktion approximieren können muss. -Dies geschah, indem zunächst eine Polynom-Approximation für die -Quadratwurzel konstruiert wurde, die dann auf das Quadrat einer +In diesem Abschnitt zeigen wir, dass sich die Funktion $z\mapsto\overline{z}$ +auf der Einheitskreisscheibe $K=\{z\in\mathbb{C}\;|\; |z|\le 1\}$ nicht +gleichmässig durch Polynome $p(z)$ mit komplexen Koeffizienten approximieren +lässt. + +Wäre eine solche Approximation möglich, dann könnte man $\overline{z}$ +auch durch eine Potenzreihe +\[ +\overline{z} += +\sum_{k=0}^\infty a_kz^k +\] +darstellen. +Das Wegintegral beider Seiten über den Pfad $\gamma(t) = e^{it}$ +in der komplexen Ebene ist +\begin{align*} +\oint_\gamma z^k\,dz +&= +\int_0^{2\pi} e^{ikt} ie^{it}\,dt += +i\int_0^{2\pi} e^{it(k+1)}\,dt += +i\biggl[ \frac{1}{i(k+1)} e^{it(k+1)}\biggr]_0^{2\pi} += +0 +\\ +\oint_\gamma +\sum_{k=0}^\infty a_kz^k +\,dz +&= +\sum_{k=0}^\infty a_k \oint_\gamma z^k\,dz += +\sum_{k=0}^\infty a_k\cdot 0 += +0 +\\ +\oint_\gamma \overline{z}\,dz +&= +\int_0^{2\pi} e^{it} ie^{it}\,dt += +i\int_0^{2\pi} \,dt = 2\pi i, +\end{align*} +dabei wurde $\overline{\gamma}(t)=e^{-it}$ verwendet. +Insbesondere widersprechen sich die beiden Integrale. +Die ursprüngliche Annahmen, $\overline{z}$ lasse sich durch Polynome +gleichmässig approximieren, muss daher verworfen werden. + +\subsubsection{Der Satz von Stone-Weierstrass für komplexe Funktionen} +Der Satz von Stone-Weierstrass kann nach dem vorangegangene Abschnitt +also nicht gelten. +Um den Beweis des Satzes~\ref{buch:satz:stone-weierstrass} +auf komplexe Zahlen zu übertragen, muss im ersten Schritt ein Weg +gefunden werden, den Betrag einer Funktion zu approximieren. + +Im reellen Fall geschah dies, indem zunächst eine Polynom-Approximation +für die Quadratwurzel konstruiert wurde, die dann auf das Quadrat einer Funktion angewendet wurde. Der Betrag einer komplexen Zahl $z$ ist aber nicht allein aus $z$ berechenbar, man braucht in irgend einer Form Zugang zu Real- |