aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/40-eigenwerte/spektraltheorie.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/chapters/40-eigenwerte/spektraltheorie.tex')
-rw-r--r--buch/chapters/40-eigenwerte/spektraltheorie.tex67
1 files changed, 31 insertions, 36 deletions
diff --git a/buch/chapters/40-eigenwerte/spektraltheorie.tex b/buch/chapters/40-eigenwerte/spektraltheorie.tex
index 94a64e1..1023d20 100644
--- a/buch/chapters/40-eigenwerte/spektraltheorie.tex
+++ b/buch/chapters/40-eigenwerte/spektraltheorie.tex
@@ -5,6 +5,7 @@
%
\section{Spektraltheorie
\label{buch:section:spektraltheorie}}
+\rhead{Spektraltheorie}
Aufgabe der Spektraltheorie ist, Bedingungen an eine Matrix $A$ und eine
\index{Spektraltheorie}
Funktion $f(z)$ zu finden, unter denen es möglich ist, $f(A)$ auf
@@ -28,8 +29,8 @@ unklar.
Da der Abstand zweier Matrizen $A$ und $B$ in der Operatornorm
mit der grössten Abweichung $\|(A-B)v\|$ für Einheitsvektoren $v$
gemessen wird, ist es einigermassen plausibel, dass
-die grösse Abweichung zwischen zwei Polynomen $|p(z) - q(z)|$ auf
-der Menge $K$ kleine sein muss, wenn $\|p(A)-q(A)\|$ klein
+die grösste Abweichung zwischen zwei Polynomen $|p(z) - q(z)|$ auf
+der Menge $K$ klein sein muss, wenn $\|p(A)-q(A)\|$ klein
sein soll.
Da die Differenz $p(z)-q(z)$ für beliebige Polynome, die sich nicht
nur um eine Konstante unterscheiden, mit $z$ über alle Grenzen wächst,
@@ -80,8 +81,8 @@ Abschnitt~\ref{buch:subsetion:stone-weierstrass} dargestellt wird,
ist ein sehr allgemeines Approximationsresultat, welches nicht nur
zeigt, dass die Approximation unter einigermassen natürlichen Voraussetzungen
beliebig genau möglich ist, sondern uns im komplexen Fall auch
-weitere Einsicht dafür geben kann, welche Voraussetzungen an eine
-komplexe Matrix gestellt werden müssen, damit man damit rechnen kann,
+weitere Einsicht in die Voraussetzungen an eine
+komplexe Matrix geben kann, damit man damit rechnen kann,
dass die Approximation zu einer konsistenten Definition von $f(A)$ führt.
%
@@ -136,14 +137,14 @@ p(z_i)
=
\sum_{j=0}^n f(z_j) \delta_{i\!j}
=
-f_(z_i)
+f(z_i)
\]
annimmt.
Das Polynom $p(z)$ heisst das {\em Legendre-Interpolationspolynom}.
-Zwar lässt sich also für eine endliche Menge von komplexen Zahlen immer
-ein Polynom finden, welches vorgeschriebene Wert in allen diesen Zahlen
-annimmt, doch ist die Stabilität für grosse $n$ eher beschränkt.
+Zwar lässt sich auf diese Weise für eine endliche Menge von komplexen Zahlen
+immer ein Polynom finden, welches vorgeschriebene Wert in allen diesen Zahlen
+annimmt, doch ist die Stabilität für grosse $n$ eher schlecht.
\subsubsection{Gleichmassige Approximation mit Bernstein-Polynomen}
@@ -175,8 +176,7 @@ gegen die Funktion $f(t)$.
Über die Konvergenz ausserhalb des reellen Intervalls wird nichts
ausgesagt.
Die Approximation mit Bernstein-Polynomen ist daher nur sinnvoll,
-wenn man weiss, dass die Eigenwerte der Matrix reell sind, was im
-wesentlichen auf diagonalisierbare Matrizen führt.
+wenn man weiss, dass die Eigenwerte der Matrix reell sind.
Für ein anderes Interval $[a,b]$ kann man ein Approximationspolynom
erhalten, indem man die affine Transformation
@@ -205,7 +205,7 @@ In diesem Fall liefert der Satz von Stone-Weierstrass die Aussage,
dass sich jede stetige periodische Funktion gleichmässig durch
trigonometrische Polynome approximieren lässt.
-Die Aussage des Satz von Stone-Weierstrass über reelle Funktionen
+Die Aussage des Satzes von Stone-Weierstrass über reelle Funktionen
lässt sich nicht auf komplexe Funktionen erweitern.
Von besonderem Interesse ist jedoch, dass der Beweis des Satz
zeigt, warum solche Aussagen für komplexe Funktionen nicht mehr
@@ -286,7 +286,7 @@ Die Variable $x\in[a,b]$ trennt natürlich die Punkte, die Algebra der
Polynome in der Variablen $x$ enthält also sicher Funktionen, die in
verschiedenen Punkten des Intervalls auch verschiedene Werte annehmen.
Nicht ganz so selbstverständlich ist aber, dass sich daraus bereits
-ergibt, dass jede beliebige Funktion sich als Polynome in $x$
+ergibt, dass jede beliebige Funktion sich durch Polynome in $x$
approximieren lässt.
Dies ist der Inhalt des folgenden Satzes von Stone-Weierstrass.
@@ -357,9 +357,9 @@ der selben Grösse.
\end{figure}
\begin{proof}[Beweis]
-Wer konstruieren zunächst das in
+Wir konstruieren zunächst das in
Abbildung~\ref{buch:eigenwerte:fig:wurzelverfahren}
-visualierte Verfahren, mit dem für jede Zahl $a\in[0,1]$
+visualisierte Verfahren, mit dem für jede Zahl $a\in[0,1]$
die Wurzel $\sqrt{a}$ berechnet werden kann.
Sei $u < \sqrt{a}$ eine Approximation der Wurzel.
Die Approximation ist der exakte Wert der Lösung, wenn $a-u^2=0$.
@@ -392,8 +392,9 @@ von Funktionen approximieren.
Da $A$ eine Algebra ist, ist $f^2\in A$.
Sei ausserdem $m^2=\sup \{f(x)^2\;|\;x\in K\}$, so dass $f^2/m^2$ eine Funktion
mit Werten im Intervall $[0,1]$ ist.
-Die Funktionen $f_n(x)=mu_n(f(x)^2/m^2)$ sind ebenfalls in $A$ und
-approximieren gleichmässig $\sqrt{f(x)^2}=|f(x)|$.
+Die Funktionen $f_n(x)=mu_n(f(x)^2/m^2)$ sind ebenfalls in $A$,
+bilden eine monoton wachsende Folge von Funktionen und
+approximieren $\sqrt{f(x)^2}=|f(x)|$ gleichmässig.
\item Schritt: Für zwei Funktionen $f,g\in A$ gibt es eine monoton wachsende
Folge, die $\max(f,g)$ gleichmässig beliebig genau approximiert
@@ -454,8 +455,8 @@ derart, dass $g_y(y)=f(y)$ und $g_y(x) \le f(x) + \varepsilon$ für
$x\in K$.
Da $g_y$ stetig ist, gilt ausserdem $g_y(x) \ge f(x) -\varepsilon$ in
einer Umgebung $U_y$ von $y$.
-Da $K$ kompakt ist, kann man endlich viele $y_i$ derart, dass die $U_{y_i}$
-immer noch ganz $K$ überdecken.
+Da $K$ kompakt ist, kann man endlich viele $y_i$ derart wählen,
+dass die $U_{y_i}$ immer noch ganz $K$ überdecken.
Die Funktion $g=\sup g_{y_i}$ erfüllt dann überall $g(x) \le f(x)+\varepsilon$,
weil jede der Funktionen $g_y$ diese Ungleichung erfüllt.
Ausserdem gilt für $x\in V_{x_j}$
@@ -701,17 +702,11 @@ Matrizen erfüllen $A^*=\pm A$ und damit
AA^* = \pm A^2 = A^*A.
\)
\item
-Symmetrische und antisymmetrische Matrizen sind normal,
+Symmetrische und antisymmetrische reelle Matrizen sind normal.
\index{symmetrisch}%
\index{antisymmetrisch}%
-denn aus $A=A^t$ folgt $A^*=\overline{A}^t$ und damit
-\begin{align*}
-AA^* &= A\overline{A}^t =
-\\
-A^*A &=
-\end{align*}
\item
-Unitäre Matrizen $U$ sind normal, das $UU^*=I=U^*U$ gilt.
+Unitäre Matrizen $U$ sind normal, da $UU^*=I=U^*U$ gilt.
\index{unitär}%
\item
Orthogonale Matrizen sind normal wegen $O(n) = U(n) \cap M_n(\mathbb{R})$.
@@ -771,20 +766,20 @@ und $AB$ normal.
\begin{proof}[Beweis]
Zunächst folgt aus $AB^*=B^*A$ auch
$A^*B = (B^*A)^* = (AB^*)^* = BA^*$.
-Der Beweis erfolgt durch Nachrechnen:
+Der Beweis, dass $A+B$ normal ist, erfolgt durch Nachrechnen:
\begin{align*}
(A+B)(A+B)^*
&=
-AA^* + AB^* + BA^*+BB^*
+AA^* + {\color{red}AB^*} + {\color{blue}BA^*}+BB^*
\\
(A+B)^*(A+B)
&=
-A^*A + A^*B + B^*A + B^*B
+A^*A + {\color{blue}A^*B} + {\color{red}B^*A} + B^*B
\end{align*}
Die ersten und letzten Terme auf der rechten Seite stimmen überein, weil
$A$ und $B$ normal sind.
-Die gemischten Terme stimmen überein wegen der Vertauschbarkeit von
-$A$ und $B^*$.
+Die gleichfarbigen gemischten Terme stimmen überein wegen der
+Vertauschbarkeit von $A$ und $B^*$.
Für das Produkt rechnet man
\begin{align*}
@@ -825,16 +820,16 @@ Es gibt eine grosse Zahl äquivalenter Eigenschaften für normale Matrizen.
Die folgenden Eigenschaften sind äquivalent:
\begin{enumerate}
\item
-Die Matrix $A$ ist mit einer unitären Matrix diagonalisierbar
+Die Matrix $A$ ist mit einer unitären Matrix diagonalisierbar.
\item
-Es gibt eine orthonormale Basis von Eigenvektoren von $A$ für $\mathbb{C}^n$
+Es gibt eine orthonormale Basis von Eigenvektoren von $A$ für $\mathbb{C}^n$.
\item
-Für jeden Vektor $x\in\mathbb{C}^n$ gilt $\|Ax\|=\|A^*x\|$
+Für jeden Vektor $x\in\mathbb{C}^n$ gilt $\|Ax\|=\|A^*x\|$.
\item
Die Frobenius-Norm der Matrix $A$ kann mit den Eigenwerten $\lambda_i$
\index{Frobenius-Norm}%
von $A$ berechnet werden:
-$\operatorname{Spur}(A^*A) = \sum_{i=1}^n |\lambda_i|^2$
+$\operatorname{Spur}(A^*A) = \sum_{i=1}^n |\lambda_i|^2$.
\item
Der hermitesche Teil $\frac12(A+A^*)$ und der antihermitesche Teil
$\frac12(A-A^*)$ von $A$ vertauschen.
@@ -843,7 +838,7 @@ $\frac12(A-A^*)$ von $A$ vertauschen.
\item
$A^*$ ist ein Polynom vom Grad $n-1$ in $A$.
\item
-Es gibt eine unitäre Matrix $U$ derart, dass $A^*=AU$
+Es gibt eine unitäre Matrix $U$ derart, dass $A^*=AU$.
\index{unitär}%
\item
Es gibt eine Polarzerlegung $A=UP$ mit einer unitären Matrix $U$ und