aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/70-graphen
diff options
context:
space:
mode:
Diffstat (limited to 'buch/chapters/70-graphen')
-rw-r--r--buch/chapters/70-graphen/beschreibung.tex270
-rw-r--r--buch/chapters/70-graphen/chapter.tex9
-rw-r--r--buch/chapters/70-graphen/images/Makefile19
-rw-r--r--buch/chapters/70-graphen/images/adjazenzd.pdfbin0 -> 23490 bytes
-rw-r--r--buch/chapters/70-graphen/images/adjazenzd.tex100
-rw-r--r--buch/chapters/70-graphen/images/adjazenzu.pdfbin0 -> 21744 bytes
-rw-r--r--buch/chapters/70-graphen/images/adjazenzu.tex98
-rw-r--r--buch/chapters/70-graphen/images/kreis.pdfbin0 -> 23540 bytes
-rw-r--r--buch/chapters/70-graphen/images/kreis.tex47
-rw-r--r--buch/chapters/70-graphen/images/peterson.pdfbin0 -> 10833 bytes
-rw-r--r--buch/chapters/70-graphen/images/peterson.tex38
-rw-r--r--buch/chapters/70-graphen/wavelets.tex125
12 files changed, 629 insertions, 77 deletions
diff --git a/buch/chapters/70-graphen/beschreibung.tex b/buch/chapters/70-graphen/beschreibung.tex
index f027932..25cfcc0 100644
--- a/buch/chapters/70-graphen/beschreibung.tex
+++ b/buch/chapters/70-graphen/beschreibung.tex
@@ -17,7 +17,7 @@ dann Beziehungen zwischen diesen Objekten.
\label{subsection:definition-von-graphen}}
In der Einleitung zu diesem Abschnitt wurde bereits eine informelle
Beschreibung des Konzeptes eines Graphen gegeben.
-Um zu einer Beschreibung mit Hilfe von Matrizen kommen können,
+Um zu einer Beschreibung mit Hilfe von Matrizen zu kommen,
wird eine exakte Definition benötigt.
Dabei werden sich einige Feinheiten zeigen, die für Anwendungen wichtig
sind und sich in Unterschieden in der Definition der zugehörigen Matrix
@@ -29,7 +29,7 @@ auch {\em Vertices} genannt.
\index{Knoten}%
\index{Vertex}%
Die Unterschiede zeigen sich in der Art und Weise, wie die Knoten
-mit sogenannten die Kanten
+mit sogenannten Kanten
\index{Kante}%
verbunden werden.
Bei einen ungerichteten Graphen sind die beiden Endpunkte einer Kante
@@ -63,9 +63,10 @@ durch die Widerstände ab.
Will man Spannungen und Ströme in einem solchen Netzwerk berechnen,
ist auch das Fehlen von Schleifen, die von $a$ zu $a$ führen, kein
Verlust.
-Die Endpunkte solcher Widerstände wären immer auf gleichem Potential,
-es würde daher kein Strom fliessen, sie haben daher keinen Einfluss auf
-das Verhalten des Netzwerkes und können weggelassen werden.
+Die Endpunkte solcher Widerstände wären immer auf dem gleichen Potential.
+Folglich würde kein Strom fliessen und sie hätten keinen Einfluss auf
+das Verhalten des Netzwerkes.
+Sie können einfach weggelassen werden.
\subsubsection{Gerichtete Graphen}
In vielen Anwendungen sind die Endpunkte einer Kante nicht austauschbar.
@@ -98,7 +99,7 @@ In einem gerichteten Graphen gehört also zu jeder Kante auch eine Richtung
und die Unterscheidung von Anfangs- und Endpunkt einer Kante ist sinnvoll
geworden.
Ausderdem ist eine Kante $(a,a)$ wohldefiniert, also eine Kante, die vom
-Knoten $a$ wieder zu $a$ zurückführen.
+Knoten $a$ wieder zu $a$ zurückführt.
Man kann einen ungerichteten Graphen in einen gerichteten Graphen
verwandeln, indem wir jede Kante $\{a,b\}$ durch zwei Kanten
@@ -115,11 +116,11 @@ E'
\{a,e\}\in E
\}.
\end{equation*}
-Eine umgekehrte Zuordnung eines ungerichteten Graphen zu einem gerichteten
-Graphen ist nicht möglich, da eine ``Schleife'' $(a,a)$ nicht in Kante
+Eine umgekehrte Zuordnung eines gerichteten zu einem ungerichteten
+Graphen ist nicht möglich, da eine ``Schleife'' $(a,a)$ nicht in eine Kante
des ungerichteten Graphen abgebildet werden kann.
-In einem gerichteten Graphen kann man sinnvoll von gerichteten Pfad
+In einem gerichteten Graphen kann man sinnvoll von gerichteten Pfaden
sprechen.
\index{Pfad}%
Ein {\em Pfad} $\gamma$ in einem gerichteten Graphen $(V,E)$ ist eine Folge
@@ -129,14 +130,53 @@ Dies bedeutet, dass der Endpunkt jeder Kante mit dem Anfangspunkt der
nachfolgenden Kante übereinstimmt.
Die {\em Länge} des Pfades $\gamma=(k_1,\dots,k_r)$ ist $|\gamma|=r$.
-Eine naheliegende Beschreibung eines gerichteten Graphen mit Hilfe einer
+\subsubsection{Adjazenzmatrix}
+\begin{figure}
+\centering
+\includegraphics{chapters/70-graphen/images/adjazenzu.pdf}
+\caption{Adjazenz-, Inzidenz- und Gradmatrix eines ungerichteten
+Graphen mit $5$ Knoten und $7$ Kanten.
+\label{buch:graphen:fig:adjazenzu}}
+\end{figure}
+Eine naheliegende Beschreibung eines Graphen mit Hilfe einer
Matrix kann man wie folgt erhalten.
Zunächst werden die Knoten aus der Menge $V$ durch die Zahlen
$1,\dots,n$ mit $n=|V|$ ersetzt.
Diese Zahlen werden dann als Zeilen- uns Spaltenindizes interpretiert.
-Die zum Graphen gehörige Matrix enthält die Einträge
+Die zum Graphen gehörige sogenannte {\em Adjazenzmatrix} $A(G)$
+enthält die Einträge
+\begin{equation}
+a_{ij}
+=
+\begin{cases}
+1&\qquad \{j,i\} \in E\\
+0&\qquad \text{sonst.}
+\end{cases}
+\label{buch:graphen:eqn:linkmatrix}
+\end{equation}
+Die Matrix hat also genau dann einen von Null verschiedenen Eintrag
+in Zeile $i$ und Spalte $j$, wenn die beiden Knoten $i$ und $j$
+im Graphen verbunden sind.
+Die Adjazenzmatrix eines ungerichteten Graphen ist immer symmetrisch.
+Ein Beispiel ist in Abbildung~\ref{buch:graphen:fig:adjazenzu}
+dargestellt.
+
+\begin{figure}
+\centering
+\includegraphics{chapters/70-graphen/images/adjazenzd.pdf}
+\caption{Adjazenz-, Inzidenz- und Gradmatrix eines gerichteten
+Graphen mit $5$ Knoten und $7$ Kanten.
+\label{buch:graphen:fig:adjazenzd}}
+\end{figure}
+Die Adjazenzmatrix kann auch für einen gerichteten Graphen definiert
+werden wie dies in in Abbildung~\ref{buch:graphen:fig:adjazenzu}
+illustriert ist.
+Ihre Einträge sind in diesem Fall definiert mit Hilfe der
+gerichteten Kanten als
\begin{equation}
-g_{ij}
+A(G)_{ij}
+=
+a_{ij}
=
\begin{cases}
1&\qquad (j,i) \in E\\
@@ -144,76 +184,72 @@ g_{ij}
\end{cases}
\label{buch:graphen:eqn:linkmatrix}
\end{equation}
-Die Matrix $G$ hat also genau dann einen nicht verschwindenden
+Die Matrix $A(G)$ hat also genau dann einen nicht verschwindenden
Matrixeintrag in Zeile $i$ und Spalte $j$, wenn es eine Verbindung
von Knoten $j$ zu Knoten $i$ gibt.
+
% XXX Abbildung Graph und Verbindungs-Matrix
-Die Beschreibung des Graphen mit der Matrix $G$ nach
+
+\subsubsection{Adjazenzmatrix und die Anzahl der Pfade}
+Die Beschreibung des Graphen mit der Adjazenzmatrix $A=A(G)$ nach
\eqref{buch:graphen:eqn:linkmatrix} ermöglicht bereits, eine interessante
Aufgabe zu lösen.
\begin{satz}
\label{buch:graphen:pfade-der-laenge-n}
-Der gerichtete Graph $([n],E)$ werde beschrieben durch die Matrix $G$.
-Dann gibt das Element in Zeile $j$ und Spalte $i$ von $G^n$ die Anzahl
+Der gerichtete Graph $G=([n],E)$ werde beschrieben durch die Adjazenzmatrix
+$A=A(G)$.
+Dann gibt das Element in Zeile $j$ und Spalte $i$ von $A^n$ die Anzahl
der Wege der Länge $n$ an, die von Knoten $i$ zu Knoten $j$ führen.
Insbesondere kann man die Definition~\eqref{buch:graphen:eqn:linkmatrix}
-formulieruen als in Zeile $j$ und Spalte $i$ der Matrix steht die Anzahl
+formulieren als: In Zeile $j$ und Spalte $i$ der Matrix steht die Anzahl
der Pfade der Länge $1$, die $i$ mit $j$ verbinden.
\end{satz}
\begin{proof}[Beweis]
-Es ist klar, dass $G^1$ die genannte Eigenschaft hat.
-Wir beweisen, dass $G^n$ Pfade der Länge $n$ zählt, mit Hilfe von
+Es ist klar, dass $A^1$ die genannte Eigenschaft hat.
+Wir beweisen, dass $A^n$ Pfade der Länge $n$ zählt, mit Hilfe von
vollständiger Induktion.
-Zur Unterscheidung schreiben wir $G^{(n)}$ für die Matrix, die in Zeile
+Zur Unterscheidung schreiben wir $A^{(n)}$ für die Matrix, die in Zeile
$j$ und Spalte $i$ die Anzahl der Pfade der Länge $n$ von $i$ nach $j$
enhält.
-Die zugehörigen Matrixelemente schreiben wir $g_{ji}^{n}$ bzw.~$g_{ji}^{(n)}$.
-Wir haben also zu zeigen, dass $G^n = G^{(n)}$.
+Die zugehörigen Matrixelemente schreiben wir $a_{ji}^{n}$ bzw.~$a_{ji}^{(n)}$.
+Wir haben also zu zeigen, dass $A^n = A^{(n)}$.
Wir nehmen daher an, dass bereits bewiesen ist, dass das Element in Zeile
-$j$ und Spalte $i$ von $G^{n-1}$ die Anzahl der Pfade der Länge $n-1$
-zählt, dass also $G^{n-1}=G^{(n-1)}$.
+$j$ und Spalte $i$ von $A^{n-1}$ die Anzahl der Pfade der Länge $n-1$
+zählt, dass also $A^{n-1}=A^{(n-1)}$.
Dies ist die Induktionsannahme.
Wir bilden jetzt alle Pfade der Länge $n$ von $i$ nach $k$.
Ein Pfad der Länge besteht aus einem Pfad der Länge $n-1$, der von $i$ zu
einem beliebigen Knoten $j$ führt, gefolgt von einer einzelnen Kante,
die von $j$ nach $k$ führt.
-Ob es eine solche Kante gibt, zeigt das Matrixelement $g_{kj}$ an.
-Das Element in Zeile $j$ und Spalte $i$ der Matrix $G^{(n-1)}$ gibt
+Ob es eine solche Kante gibt, zeigt das Matrixelement $a_{kj}$ an.
+Das Element in Zeile $j$ und Spalte $i$ der Matrix $A^{(n-1)}$ gibt
die Anzahl der Wege von $i$ nach $j$ an.
-Es gibt also $g_{kj}\cdot g_{ji}^{(n-1)}$ Wege der Länge $n$, die von $i$
+Es gibt also $a_{kj}\cdot a_{ji}^{(n-1)}$ Wege der Länge $n$, die von $i$
nach $k$ führen, aber als zweitletzten Knoten über den Knoten $j$ führen.
Die Gesamtzahl der Wege der Länge $n$ von $i$ nach $k$ ist daher
\[
-g_{ki}^{(n)}
+a_{ki}^{(n)}
=
-\sum_{j=1}^n g_{kj} g_{ji}^{(n-1)}.
+\sum_{j=1}^n a_{kj} a_{ji}^{(n-1)}.
\]
In Matrixschreibweise bedeutet dies
\[
-G^{(n)}
+A^{(n)}
=
-G\cdot G^{(n-1)}
+A\cdot A^{(n-1)}
=
-G\cdot G^{n-1}
+A\cdot A^{n-1}
=
-G^n.
+A^n.
\]
Beim zweiten Gleichheitszeichen haben wir die Induktionsannahme
verwendet.
\end{proof}
-Die Definition~\eqref{buch:graphen:eqn:linkmatrix} der Matrix, die den
-Graphen beschreibt, lässt sich natürlich auch auf einen ungerichteten
-Graphen verallgemeinern.
-Die entstehende Matrix hat dann aber die zusätzlichen Eigenschaften, dass
-alle Diagonalelemente $0$ sind und dass die Matrix symmetrisch ist.
-Auch im Fall eines ungerichteten Graphen kann die Matrix dazu verwendet
-werden, die Anzahl der Pfade zu zählen.
-
Der Satz~\ref{buch:graphen:pfade-der-laenge-n} ermöglicht auch, einen
Algorithmus für den sogenannten Durchmesser eines Graphen zu formulieren.
@@ -225,40 +261,21 @@ es zwischen zwei beliebigen Knoten einen Pfad der Länge $\le d$ gibt.
\end{definition}
Der Durchmesser $d$ eines Graphen ist der kleinste Exponent derart,
-dass $G^d$ keine ausserdiagonalen Einträge $0$ hat.
-Die Diagonalelemente von $G^n$ zählen die Anzahl der geschlossenen Pfade
+dass $A^d$ keine ausserdiagonalen Einträge $0$ hat.
+Die Diagonalelemente von $A^n$ zählen die Anzahl der geschlossenen Pfade
der Länge $n$, die durch einen Knoten führen.
Diese können für den Durchmesser ignoriert werden.
-Man kann also Potenzen $G^n$ berechnen bis keine Einträge $0$ mehr vorhanden
+Man kann also Potenzen $A^n$ berechnen bis keine Einträge $0$ mehr vorhanden
sind.
\begin{beispiel}
\begin{figure}
\centering
-\begin{tikzpicture}[>=latex,thick]
-\def\l{0.25}
-\def\r{1}
-\def\punkt#1{({\r*sin(((#1)-1)*72)},{\r*cos(((#1)-1)*72)})}
-\def\R{2}
-\def\Punkt#1{({\R*sin(((#1)-6)*72)},{\R*cos(((#1)-6)*72)})}
-\draw \Punkt{6} -- \Punkt{7} -- \Punkt{8} -- \Punkt{9} -- \Punkt{10} -- cycle;
-\draw \punkt{1} -- \punkt{3} -- \punkt{5} -- \punkt{2} -- \punkt{4} -- cycle;
-\foreach \k in {1,...,5}{
- \draw \punkt{\k} -- \Punkt{(\k+5)};
- \fill[color=white] \punkt{\k} circle[radius=\l];
- \node at \punkt{\k} {$\k$};
- \draw \punkt{\k} circle[radius=\l];
-}
-\foreach \k in {6,...,10}{
- \fill[color=white] \Punkt{\k} circle[radius=\l];
- \node at \Punkt{\k} {$\k$};
- \draw \Punkt{\k} circle[radius=\l];
-}
-\end{tikzpicture}
+\includegraphics{chapters/70-graphen/images/peterson.pdf}
\caption{Peterson-Graph mit zehn Knoten.
\label{buch:figure:peterson}}
\end{figure}
-Der Peterson-Graph hat die Matrix
+Der Peterson-Graph hat die Adjazenzmatrix
\[
G
=
@@ -325,24 +342,131 @@ Dies ist, was eine Beschriftung einer Kante bewerkstelligt.
Eine Beschriftung mit Elementen der Menge $L$
eines gerichteten oder ungerichteten Graphen $G=(V,E)$
ist eine Abbildung $l\colon E\to L$.
+\index{Beschriftung}%
\end{definition}
-\subsection{Die Adjazenz-Matrix und Laplace-Matrix
+\subsection{Inzidenzmatrix}
+Die Adjazenzmatrix kann zusätzliche Information, die möglicherweise
+mit den Kanten verbunden ist, nicht mehr darstellen.
+Dies tritt zum Beispiel in der Informatik bei der Beschreibung
+endlicher Automaten auf, wo zu jeder gerichteten Kante auch noch
+Buchstaben gehören, für die der Übergang entlang dieser Kante
+möglich ist.
+
+Die {\em Inzidenzmatrix} löst dieses Problem.
+\index{Inzidenzmatrix}%
+Dazu werden zunächst die Kanten numeriert $1,\dots,m$
+numeriert.
+Die Matrixeinträge
+\[
+a_{ij} = \begin{cases}
+1\qquad&\text{Knoten $i$ ist ein Endpunkt von Kante $j$}
+\\
+0\qquad&\text{sonst}
+\end{cases}
+\]
+stellen die Beziehung zwischen Kanten und Knoten her.
+
+\subsubsection{Beschriftete Graphen}
+Die Inzidenzmatrix kann auch einen erweiterten Graphenbegriff abbilden,
+in dem zwischen zwei Kanten mehrere Verbindungen möglich sind.
+Graphen mit beschrifteten Kanten gehören dazu.
+
+\begin{definition}
+Ein gerichteter Graph mit beschrifteten Kanten ist eine Menge $V$ von
+Knoten und eine Menge von beschrifteten Kanten der Form
+\[
+E \{ (a,b,l)\in V^2\times L\;|\; \text{Eine Kante mit Beschriftung $l$ führt von $a$ nach $b$}\}.
+\]
+Die Menge $L$ enthält die möglichen Beschriftungen der Kanten.
+\end{definition}
+
+Für einen gerichteten Graphen wird in der Inzidenzmatrix für
+den Anfangspunkt einer Kante $-1$ eingetragen und für den
+Endpunkt $+1$.
+% XXX Beispiel
+
+\subsubsection{Inzidenzmatrix und Adjazenzmatrix}
+Sei $B(G)$ die Inzidenzmatrix eines Graphen $G$.
+Die Spalten von $B(G)$ sind mit den Kanten des Graphen indiziert.
+Die Matrix $B(G)B(G)^t$ ist eine quadratische Matrix, deren
+Zeilen und Spalten mit den Knoten des Graphen indiziert sind.
+In dieser Matrix geht die Informatione über die individuellen
+Kanten wieder verloren.
+Sie hat für $i\ne j$ die Einträge
+\begin{align*}
+(B(G)B(G)^t)_{ij}
+&=
+\sum_{\text{$k$ Kante}} b_{ik}b_{jk}
+\\
+&=\text{Anzahl der Kanten, die $i$ mit $j$ verbinden}
+\\
+&=a_{ij}
+\end{align*}
+Die Adjazenzmatrix eines Graphen lässt sich also aus der
+Inzidenzmatrix berechnen.
+
+\subsubsection{Gradmatrix}
+\index{Gradmatrix}%
+Die Diagonale von $B(G)B(G)^t$ enthält die Werte
+\begin{align*}
+(B(G)B(G)^t)_{ii}
+&=
+\sum_{\text{$k$ Kante}} b_{ik}^2
+=
+\text{Anzahl Kanten, die im Knoten $i$ enden}
+\end{align*}
+Der {\em Grad} eines Knoten eines Graphen ist die Anzahl der
+\index{Grad eines Knotens}%
+Kanten, die in diesem Knoten enden.
+Die Diagonalmatrix die aus den Graden der Knoten besteht, heisst die
+Gradmatrix $D(G)$ des Graphen.
+Es gilt daher $B(G)B(G)^t = A(G) + D(G)$.
+
+\subsubsection{Gerichtete Graphen}
+Für einen gerichteten Graphen ändert sich an der Diagonalen
+der Matrix $B(G)B(G)^t$ nichts.
+Da es in einem gerichteten Graphen nur eine einzige Kante $k$ gibt, die zwei
+Knoten $i$ und $j$ verbinden kann, muss das zugehörige
+Ausserdiagonalelement
+\[
+a_{ij}
+=b_{ik}b_{jk}
+=
+-1
+\]
+sein.
+Für einen gerichteten Graphen sind daher alle Ausserdiagonalelemente
+negativ und es gilt $B(G)B(G)^t = D(G)-A(G)$.
+
+\subsubsection{Anwendung: Netlist}
+Eine natürliche Anwendung eines gerichteten und beschrifteten Graphen
+ist eine eletronische Schaltung.
+Die Knoten des Graphen sind untereinander verbundene Leiter, sie werden
+auch {\em nets} genannt.
+Die beschrifteten Kanten sind die elektronischen Bauteile, die solche
+Nets miteinander verbinden.
+Die Inzidenzmatrix beschreibt, welche Anschlüsse eines Bauteils mit
+welchen Nets verbunden werden müssen.
+Die Informationen in der Inzidenzmatrix werden also in einer
+Applikation zum Schaltungsentwurf in ganz natürlicher Weise erhoben.
+
+\subsection{Die Adjazenzmatrix und Laplace-Matrix
\label{subsection:adjazenz-und-laplace-matrix}}
Die Beschreibung mit der Matrix~\eqref{buch:graphen:eqn:linkmatrix}
``vergisst'' den ``Namen'' der Kante, die eine Verbindung zwischen zwei
Knoten herstellt.
Damit ist sie keine geeignete Grundlage, um beschriftete Graphen einer
Matrixbeschreibung zuzuführen.
-Eine solche muss eine Matrix verwenden, nicht nur das Vorhandensein einer
+Eine solche muss eine Matrix verwenden, die nicht nur das Vorhandensein einer
Verbindung wiedergibt, sondern ausdrückt, welche Kante welche beiden
Knoten miteinander verbindet.
-Dies führt auf die sogenannte Ajazenz-Matrix.
+Dies führt zur sogenannten Adjazenzmatrix.
\begin{definition}
\label{buch:def:adjazenz-matrix}
Ist $G=(V,E)$ ein gerichteter Graph mit $n=|G|$ Vertizes und $m=|E|$ Kanten,
-dann ist die zugehörige {\em Adjazenz-Matrix} $A=A(G)$ eine $n\times m$-Matrix.
+dann ist die zugehörige {\em Adjazenzmatrix} $A=A(G)$ eine $n\times m$-Matrix.
In der Spalte $k$ wird der Anfangspunkt der Kante $k$ mit $-1$, der Endpunkt
mit $+1$ angezeigt, die übrigen Einträge sind $0$.
$A$ hat also die Matrixelemente
@@ -358,13 +482,13 @@ a_{ik}
\end{equation}
\end{definition}
-Der wesentliche Unterschied dieser Definition von der Matrix $H$
+Der wesentliche Unterschied dieser Definition von der Matrix $G$
liegt in der Bedeutung der Einträge.
-Für $H$ drückt ein nicht verschwindendes Matrixelement das Vorhandensein
+Für $G$ drückt ein nicht verschwindendes Matrixelement das Vorhandensein
einer Kante aus, in $A$ ist es die Tatsache, dass in diesem Knoten
-eine Kante endet.
+eine Kante beginnt oder endet.
-Es ist natürlich möglich, aus der Adjazenz-Matrix auch die Link-Matrix
+Es ist natürlich möglich, aus der Adjazenzmatrix auch die Link-Matrix
zu rekonstruieren.
Dazu muss für jedes Paar $(j,i)$ von Knoten festgestellt werden,
ob die Adjazenzmatrix eine entsprechende Verbindung enthält, also ob der
diff --git a/buch/chapters/70-graphen/chapter.tex b/buch/chapters/70-graphen/chapter.tex
index ae1bb9c..b6e02c9 100644
--- a/buch/chapters/70-graphen/chapter.tex
+++ b/buch/chapters/70-graphen/chapter.tex
@@ -14,18 +14,19 @@ aber auch viele andere Datenstrukturen.
\index{Graph}%
Die Knoten können einzelne Objekte beschreiben, die Kanten beschreiben
dann Beziehungen zwischen diesen Objekten.
-Graphen haben zwar nur eine eindimensionale Geometrie, sie können aber als
-erste Approximation auch dreidimensionaler Objekte dienen.
+Graphen haben zwar nur eine eindimensionale Geometrie, sie können aber auch als
+erste Approximation dreidimensionaler Objekte dienen.
Die Bedeutung des Graphenkozeptes wird unterstrichen von der Vielzahl
-von Fragestellungen, die über Graphen gestellt worden sind und der
+von Fragestellungen, die über Graphen gestellt, und der
zugehöriten Lösungsalgorithmen, die zu ihrer Beantwortung gefunden
worden sind.
Die Komplexitätstheorie hat sogar gezeigt, dass sich jedes diskrete
Problem in ein Graphenproblem umformulieren lässt.
\index{Komplexitätstheorie}%
+
Das Problem, einen Stundenplan zu finden, der sicherstellt, dass
-alle Studierenden an jedes Fach besuchen können, für die sie sich
+alle Studierenden jedes Fach besuchen können, für die sie sich
angemeldet haben, lässt sich zum Beispiel wie folgt als ein
Graphenproblem formulieren.
Die Fächer betrachten wir als Knoten des Graphen.
diff --git a/buch/chapters/70-graphen/images/Makefile b/buch/chapters/70-graphen/images/Makefile
new file mode 100644
index 0000000..b42cbae
--- /dev/null
+++ b/buch/chapters/70-graphen/images/Makefile
@@ -0,0 +1,19 @@
+#
+# Makefile -- Bilder für Kapitel Graphen
+#
+# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+#
+all: peterson.pdf adjazenzu.pdf adjazenzd.pdf kreis.pdf
+
+peterson.pdf: peterson.tex
+ pdflatex peterson.tex
+
+adjazenzu.pdf: adjazenzu.tex
+ pdflatex adjazenzu.tex
+
+adjazenzd.pdf: adjazenzd.tex
+ pdflatex adjazenzd.tex
+
+kreis.pdf: kreis.tex
+ pdflatex kreis.tex
+
diff --git a/buch/chapters/70-graphen/images/adjazenzd.pdf b/buch/chapters/70-graphen/images/adjazenzd.pdf
new file mode 100644
index 0000000..dc3dd8f
--- /dev/null
+++ b/buch/chapters/70-graphen/images/adjazenzd.pdf
Binary files differ
diff --git a/buch/chapters/70-graphen/images/adjazenzd.tex b/buch/chapters/70-graphen/images/adjazenzd.tex
new file mode 100644
index 0000000..5cef18e
--- /dev/null
+++ b/buch/chapters/70-graphen/images/adjazenzd.tex
@@ -0,0 +1,100 @@
+%
+% adjazenzd.tex -- Adjazenz-Matrix für einen gerichten Graphen
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\documentclass[tikz]{standalone}
+\usepackage{amsmath}
+\usepackage{mathtools}
+\usepackage{times}
+\usepackage{txfonts}
+\usepackage{pgfplots}
+\usepackage{csvsimple}
+\usetikzlibrary{arrows,intersections,math,calc}
+\begin{document}
+\def\skala{1}
+\begin{tikzpicture}[>=latex,thick,scale=\skala]
+
+\def\r{1.8}
+
+\begin{scope}
+\coordinate (A) at ({\r*cos(0*72)},{\r*sin(0*72)});
+\coordinate (B) at ({\r*cos(1*72)},{\r*sin(1*72)});
+\coordinate (C) at ({\r*cos(2*72)},{\r*sin(2*72)});
+\coordinate (D) at ({\r*cos(3*72)},{\r*sin(3*72)});
+\coordinate (E) at ({\r*cos(4*72)},{\r*sin(4*72)});
+
+\draw[->,shorten >= 0.2cm,shorten <= 0.2cm] (A) -- (C);
+\draw[color=white,line width=5pt] (B) -- (D);
+\draw[->,shorten >= 0.2cm,shorten <= 0.2cm] (B) -- (D);
+
+\draw[->,shorten >= 0.2cm,shorten <= 0.2cm] (A) -- (B);
+\draw[->,shorten >= 0.2cm,shorten <= 0.2cm] (B) -- (C);
+\draw[->,shorten >= 0.2cm,shorten <= 0.2cm] (C) -- (D);
+\draw[->,shorten >= 0.2cm,shorten <= 0.2cm] (D) -- (E);
+\draw[->,shorten >= 0.2cm,shorten <= 0.2cm] (E) -- (A);
+
+\draw (A) circle[radius=0.2];
+\draw (B) circle[radius=0.2];
+\draw (C) circle[radius=0.2];
+\draw (D) circle[radius=0.2];
+\draw (E) circle[radius=0.2];
+
+\node at (A) {$1$};
+\node at (B) {$2$};
+\node at (C) {$3$};
+\node at (D) {$4$};
+\node at (E) {$5$};
+\node at (0,0) {$G$};
+
+\node at ($0.5*(A)+0.5*(B)-(0.1,0.1)$) [above right] {$\scriptstyle 1$};
+\node at ($0.5*(B)+0.5*(C)+(0.05,-0.07)$) [above left] {$\scriptstyle 2$};
+\node at ($0.5*(C)+0.5*(D)+(0.05,0)$) [left] {$\scriptstyle 3$};
+\node at ($0.5*(D)+0.5*(E)$) [below] {$\scriptstyle 4$};
+\node at ($0.5*(E)+0.5*(A)+(-0.1,0.1)$) [below right] {$\scriptstyle 5$};
+\node at ($0.6*(A)+0.4*(C)$) [above] {$\scriptstyle 6$};
+\node at ($0.4*(B)+0.6*(D)$) [left] {$\scriptstyle 7$};
+
+
+\end{scope}
+
+\begin{scope}[xshift=3cm,yshift=-1.1cm]
+\node at (0,0) [right] {$\displaystyle
+B(G)
+=
+\begin{pmatrix*}[r]
+-1& 0& 0& 0& 1&-1& 0\\
+ 1&-1& 0& 0& 0& 0&-1\\
+ 0& 1&-1& 0& 0& 1& 0\\
+ 0& 0& 1&-1& 0& 0& 1\\
+ 0& 0& 0& 1&-1& 0& 0
+\end{pmatrix*}$};
+\end{scope}
+
+\begin{scope}[xshift=3cm,yshift=1.1cm]
+\node at (0,0) [right] {$\displaystyle
+A(G)
+=
+\begin{pmatrix*}[r]
+ 0& 1& 1& 0& 1\\
+ 1& 0& 1& 1& 0\\
+ 1& 1& 0& 1& 0\\
+ 0& 1& 1& 0& 1\\
+ 1& 0& 0& 1& 0
+\end{pmatrix*},
+\quad
+D(G)
+=
+\begin{pmatrix*}[r]
+3&0&0&0&0\\
+0&3&0&0&0\\
+0&0&3&0&0\\
+0&0&0&3&0\\
+0&0&0&0&1
+\end{pmatrix*}
+$};
+\end{scope}
+
+\end{tikzpicture}
+\end{document}
+
diff --git a/buch/chapters/70-graphen/images/adjazenzu.pdf b/buch/chapters/70-graphen/images/adjazenzu.pdf
new file mode 100644
index 0000000..d3f255e
--- /dev/null
+++ b/buch/chapters/70-graphen/images/adjazenzu.pdf
Binary files differ
diff --git a/buch/chapters/70-graphen/images/adjazenzu.tex b/buch/chapters/70-graphen/images/adjazenzu.tex
new file mode 100644
index 0000000..b6d129d
--- /dev/null
+++ b/buch/chapters/70-graphen/images/adjazenzu.tex
@@ -0,0 +1,98 @@
+%
+% adjazenzu.tex -- Adjazenz-Matrix für einen ungerichten Graphen
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\documentclass[tikz]{standalone}
+\usepackage{amsmath}
+\usepackage{times}
+\usepackage{txfonts}
+\usepackage{pgfplots}
+\usepackage{csvsimple}
+\usetikzlibrary{arrows,intersections,math,calc}
+\begin{document}
+\def\skala{1}
+\begin{tikzpicture}[>=latex,thick,scale=\skala]
+
+\def\r{1.8}
+
+\begin{scope}
+\coordinate (A) at ({\r*cos(0*72)},{\r*sin(0*72)});
+\coordinate (B) at ({\r*cos(1*72)},{\r*sin(1*72)});
+\coordinate (C) at ({\r*cos(2*72)},{\r*sin(2*72)});
+\coordinate (D) at ({\r*cos(3*72)},{\r*sin(3*72)});
+\coordinate (E) at ({\r*cos(4*72)},{\r*sin(4*72)});
+
+\draw[shorten >= 0.2cm,shorten <= 0.2cm] (A) -- (C);
+\draw[color=white,line width=5pt] (B) -- (D);
+\draw[shorten >= 0.2cm,shorten <= 0.2cm] (B) -- (D);
+
+\draw[shorten >= 0.2cm,shorten <= 0.2cm] (A) -- (B);
+\draw[shorten >= 0.2cm,shorten <= 0.2cm] (B) -- (C);
+\draw[shorten >= 0.2cm,shorten <= 0.2cm] (C) -- (D);
+\draw[shorten >= 0.2cm,shorten <= 0.2cm] (D) -- (E);
+\draw[shorten >= 0.2cm,shorten <= 0.2cm] (E) -- (A);
+
+\draw (A) circle[radius=0.2];
+\draw (B) circle[radius=0.2];
+\draw (C) circle[radius=0.2];
+\draw (D) circle[radius=0.2];
+\draw (E) circle[radius=0.2];
+
+\node at (A) {$1$};
+\node at (B) {$2$};
+\node at (C) {$3$};
+\node at (D) {$4$};
+\node at (E) {$5$};
+\node at (0,0) {$G$};
+
+\node at ($0.5*(A)+0.5*(B)-(0.1,0.1)$) [above right] {$\scriptstyle 1$};
+\node at ($0.5*(B)+0.5*(C)+(0.05,-0.07)$) [above left] {$\scriptstyle 2$};
+\node at ($0.5*(C)+0.5*(D)+(0.05,0)$) [left] {$\scriptstyle 3$};
+\node at ($0.5*(D)+0.5*(E)$) [below] {$\scriptstyle 4$};
+\node at ($0.5*(E)+0.5*(A)+(-0.1,0.1)$) [below right] {$\scriptstyle 5$};
+\node at ($0.6*(A)+0.4*(C)$) [above] {$\scriptstyle 6$};
+\node at ($0.4*(B)+0.6*(D)$) [left] {$\scriptstyle 7$};
+
+\end{scope}
+
+\begin{scope}[xshift=3cm,yshift=-1.1cm]
+\node at (0,0) [right] {$\displaystyle
+B(G)
+=
+\begin{pmatrix}
+1&0&0&0&1&0&0\\
+1&1&0&0&0&1&0\\
+0&1&1&0&0&0&1\\
+0&0&1&1&0&1&0\\
+0&0&0&1&1&0&1
+\end{pmatrix}$};
+\end{scope}
+
+\begin{scope}[xshift=3cm,yshift=1.1cm]
+\node at (0,0) [right] {$\displaystyle
+A(G)
+=
+\begin{pmatrix}
+0&1&1&0&1\\
+1&0&1&1&0\\
+1&1&0&1&0\\
+0&1&1&0&1\\
+1&0&0&1&0
+\end{pmatrix},
+\quad
+D(G)
+=
+\begin{pmatrix}
+3&0&0&0&0\\
+0&3&0&0&0\\
+0&0&3&0&0\\
+0&0&0&3&0\\
+0&0&0&0&2
+\end{pmatrix}
+$};
+\end{scope}
+
+\end{tikzpicture}
+\end{document}
+
diff --git a/buch/chapters/70-graphen/images/kreis.pdf b/buch/chapters/70-graphen/images/kreis.pdf
new file mode 100644
index 0000000..f7ed37a
--- /dev/null
+++ b/buch/chapters/70-graphen/images/kreis.pdf
Binary files differ
diff --git a/buch/chapters/70-graphen/images/kreis.tex b/buch/chapters/70-graphen/images/kreis.tex
new file mode 100644
index 0000000..a926839
--- /dev/null
+++ b/buch/chapters/70-graphen/images/kreis.tex
@@ -0,0 +1,47 @@
+%
+% tikztemplate.tex -- template for standalon tikz images
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\documentclass[tikz]{standalone}
+\usepackage{amsmath}
+\usepackage{mathtools}
+\usepackage{times}
+\usepackage{txfonts}
+\usepackage{pgfplots}
+\usepackage{csvsimple}
+\usetikzlibrary{arrows,intersections,math}
+\begin{document}
+\def\skala{1}
+\begin{tikzpicture}[>=latex,thick,scale=\skala]
+
+\def\r{3}
+
+\foreach \w in {0,20,...,340}{
+ \draw (\w:\r) circle[radius=0.2];
+ \draw[->,shorten >= 0.2cm,shorten <= 0.2cm] (\w:\r) -- ({\w+20}:\r);
+}
+
+\foreach \x in {1,...,15}{
+ \node at ({20*(\x-1)}:\r) {$\scriptstyle \x$};
+}
+\node at (340:\r) {$\scriptstyle n$};
+\node at (320:\r) {$\scriptstyle \dots$};
+\node at (300:\r) {$\scriptstyle \dots$};
+
+\begin{scope}[xshift=4cm]
+\node at (0,0) [right] {$\displaystyle
+L=\begin{pmatrix*}[r]
+ 2&-1& 0& 0&\dots& 0&-1\\
+-1& 2&-1& 0&\dots& 0& 0\\
+ 0&-1& 2&-1&\dots& 0& 0\\
+ 0& 0&-1& 2&\dots& 0& 0\\
+\vdots&\vdots&\vdots&\vdots&\ddots&\vdots&\vdots\\
+ 0& 0& 0& 0&\dots& 2&-1\\
+-1& 0& 0& 0&\dots&-1& 2
+\end{pmatrix*}$};
+\end{scope}
+
+\end{tikzpicture}
+\end{document}
+
diff --git a/buch/chapters/70-graphen/images/peterson.pdf b/buch/chapters/70-graphen/images/peterson.pdf
new file mode 100644
index 0000000..259d808
--- /dev/null
+++ b/buch/chapters/70-graphen/images/peterson.pdf
Binary files differ
diff --git a/buch/chapters/70-graphen/images/peterson.tex b/buch/chapters/70-graphen/images/peterson.tex
new file mode 100644
index 0000000..c0af98b
--- /dev/null
+++ b/buch/chapters/70-graphen/images/peterson.tex
@@ -0,0 +1,38 @@
+%
+% tikztemplate.tex -- template for standalon tikz images
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\documentclass[tikz]{standalone}
+\usepackage{amsmath}
+\usepackage{times}
+\usepackage{txfonts}
+\usepackage{pgfplots}
+\usepackage{csvsimple}
+\usetikzlibrary{arrows,intersections,math}
+\begin{document}
+\def\skala{1}
+\begin{tikzpicture}[>=latex,thick,scale=\skala]
+
+\def\l{0.25}
+\def\r{1}
+\def\punkt#1{({\r*sin(((#1)-1)*72)},{\r*cos(((#1)-1)*72)})}
+\def\R{2}
+\def\Punkt#1{({\R*sin(((#1)-6)*72)},{\R*cos(((#1)-6)*72)})}
+\draw \Punkt{6} -- \Punkt{7} -- \Punkt{8} -- \Punkt{9} -- \Punkt{10} -- cycle;
+\draw \punkt{1} -- \punkt{3} -- \punkt{5} -- \punkt{2} -- \punkt{4} -- cycle;
+\foreach \k in {1,...,5}{
+ \draw \punkt{\k} -- \Punkt{(\k+5)};
+ \fill[color=white] \punkt{\k} circle[radius=\l];
+ \node at \punkt{\k} {$\k$};
+ \draw \punkt{\k} circle[radius=\l];
+}
+\foreach \k in {6,...,10}{
+ \fill[color=white] \Punkt{\k} circle[radius=\l];
+ \node at \Punkt{\k} {$\k$};
+ \draw \Punkt{\k} circle[radius=\l];
+}
+
+\end{tikzpicture}
+\end{document}
+
diff --git a/buch/chapters/70-graphen/wavelets.tex b/buch/chapters/70-graphen/wavelets.tex
index 6a4876a..0739f14 100644
--- a/buch/chapters/70-graphen/wavelets.tex
+++ b/buch/chapters/70-graphen/wavelets.tex
@@ -6,3 +6,128 @@
\section{Wavelets auf Graphen
\label{buch:section:wavelets-auf-graphen}}
\rhead{Wavelets auf Graphen}
+Graphen werden oft verwendet um geometrische Objekte zu approximieren.
+Funktionen auf einem Graphen können dann Approximationen von physikalischen
+Grössen wie zum Beispiel der Temperatur auf dem geometrischen Objekt
+interpretiert werden.
+Verschiedene Basen für die Beschreibung solcher Funktionen sind im Laufe
+der Zeit verwendet worden, doch Wavelets auf einem Graphen sind eine
+neuere Idee, mit der man aus der Laplace-Matrix Basen gewinnen kann,
+die die Idee von langsam sich ausbreitenden Störungen besonders gut
+wiederzugeben in der Lage sind.
+
+In diesem Abschnitt werden erst Funktionen auf einem Graphen genauer
+definiert.
+In Abschnitt~\ref{buch:subsection:standardbasis-und-eigenbasis}
+wird die Eigenbasis mit dem Laplace-Operator konstruiert und mit
+der Standarbasis verglichen.
+Schliesslich werden in Abschnitt~\ref{buch:subsection:wavelet-basen}
+verschiedene Wavelet-Basen konstruiert.
+
+\subsection{Funktionen auf einem Graphen und die Laplace-Matrix}
+Sei $G$ ein Graph mit der Knotenmenge $V$.
+Eine Funktion $f$ auf einem Graphen ist eine Funktion $f\colon V\to\mathbb{R}$.
+Funktionen auf $G$ sind also Vektoren, die mit den Knoten $V$ indiziert
+sind.
+
+Es gibt auch ein Skalarprodukt für Funktionen auf dem Graphen.
+Sind $f$ und $g$ zwei Funktionen auf $G$, dann ist das Skalarprodukt
+definiert durch
+\[
+\langle f,g\rangle
+=
+\frac{1}{|V|}\sum_{v\in V} \overline{f}(v) g(v)
+\]
+Dies ist das bekannte Skalarprodukt der Vektoren mit Komponenten $f(v)$.
+
+\begin{figure}
+\centering
+\includegraphics{chapters/70-graphen/images/kreis.pdf}
+\caption{Beispiel Graph zur Illustration der verschiedenen Basen auf einem
+Graphen.
+\label{buch:graphen:fig:kreis}}
+\end{figure}
+\begin{beispiel}
+Wir illustrieren die im folgenden entwickelte Theorie an dem Beispielgraphen
+von Abbildung~\ref{buch:graphen:fig:kreis}.
+Besonders interessant sind die folgenden Funktionen:
+\[
+\left.
+\begin{aligned}
+s_m(k)
+&=
+\sin\frac{2\pi mk}{n}
+\\
+c_m(k)
+&=
+\cos\frac{2\pi mk}{n}
+\end{aligned}
+\;
+\right\}
+\quad
+\Rightarrow
+\quad
+e_m(k)
+=
+e^{2\pi imk/n}
+=
+c_m(k) + is_m(k).
+\]
+Das Skalarprodukt dieser Funktionen ist
+\[
+\langle e_m, e_{m'}\rangle
+=
+\frac1n
+\sum_{k=1}^n
+\overline{e^{2\pi i km/n}}
+e^{2\pi ikm'/n}
+=
+\frac1n
+\sum_{k=1}^n
+e^{\frac{2\pi i}{n}(m'-m)k}
+=
+\delta_{mm'}
+\]
+Die Funktionen bilden daher eine Orthonormalbasis des Raums der
+Funktionen auf $G$.
+Wegen $\overline{e_m} = e_{-m}$ folgt, dass für gerade $n$
+die Funktionen
+\[
+c_0, c_1,s_1,c_2,s_2,\dots c_{\frac{n}2-1},c_{\frac{n}2-1},c_{\frac{n}2}
+\]
+eine orthonormierte Basis.
+\end{beispiel}
+
+
+Die Laplace-Matrix kann mit der folgenden Definition zu einer linearen
+Abbildung auf Funktionen auf dem Graphen gemacht werden.
+Sei $f\colon V\to \mathbb{R}$ und $L$ die Laplace-Matrix mit
+Matrixelementen $l_{vv'}$ wobei $v,v'\in V$ ist.
+Dann definieren wir die Funktion $Lf$ durch
+\[
+(Lf)(v)
+=
+\sum_{v'\in V} l_{vv'}f(v').
+\]
+
+\subsection{Standardbasis und Eigenbasis
+\label{buch:subsection:standardbasis-und-eigenbasis}}
+Die einfachste Basis, aus der siche Funktionen auf dem Graphen linear
+kombinieren lassen, ist die Standardbasis.
+Sie hat für jeden Knoten $v$ des Graphen eine Basisfunktion mit den Werten
+\[
+e_v\colon V\to\mathbb R:v'\mapsto \begin{cases}
+1\qquad&v=v'\\
+0\qquad&\text{sonst.}
+\end{cases}
+\]
+
+
+\subsection{Wavelet-Basen
+\label{buch:subsection:wavelet-basen}}
+
+
+
+
+
+