aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/80-wahrscheinlichkeit/positiv.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/chapters/80-wahrscheinlichkeit/positiv.tex')
-rw-r--r--buch/chapters/80-wahrscheinlichkeit/positiv.tex26
1 files changed, 15 insertions, 11 deletions
diff --git a/buch/chapters/80-wahrscheinlichkeit/positiv.tex b/buch/chapters/80-wahrscheinlichkeit/positiv.tex
index 159d6d3..4e57fe0 100644
--- a/buch/chapters/80-wahrscheinlichkeit/positiv.tex
+++ b/buch/chapters/80-wahrscheinlichkeit/positiv.tex
@@ -29,16 +29,16 @@ erklärt.
\label{buch:subsection:elementare-eigenschaften}}
In diesem Abschnitt betrachten wir ausschliesslich reelle Vektoren
und Matrizen.
-Die Komponenten sind somit immer mit miteinander vergleichbar, daraus
+Die Komponenten sind somit immer miteinander vergleichbar, daraus
lässt sich auch eine Vergleichsrelation zwischen Vektoren
ableiten.
\begin{definition}
Ein Vektor $v\in\mathbb{R}^n$ heisst {\em positiv}, geschrieben
-$v>0$, wenn alle seine Komponenten positiv sind: $v_i>0\forall i$.
+$v>0$, wenn alle seine Komponenten positiv sind: $v_i>0\,\forall i$.
Ein Vektor $v\in\mathbb{R}^n$ heisst {\em nichtnegativ}, in Formeln
$v\ge 0$, wenn alle
-seine Komponenten nicht negativ sind: $v_i\ge 0\forall i$.
+seine Komponenten nicht negativ sind: $v_i\ge 0\,\forall i$.
\index{positiver Vektor}%
\index{nichtnegativer Vektor}%
\end{definition}
@@ -67,9 +67,9 @@ Die Definition funktionieren analog auch für Matrizen:
\begin{definition}
Eine Matrix $A\in M_{m\times n}(\mathbb{R})$ heisst {\em positiv},
-wenn alle ihre Einträge $a_{i\!j}$ positiv sind: $a_{i\!j}>0\forall i,j$.
+wenn alle ihre Einträge $a_{i\!j}$ positiv sind: $a_{i\!j}>0\,\forall i,j$.
Eine Matrix $A\in M_{m\times n}(\mathbb{R})$ heisst {\em nichtnegativ},
-wenn alle ihre Einträge $a_{i\!j}$ nichtnegativ sind: $a_{i\!j}\ge 0\forall i,j$.
+wenn alle ihre Einträge $a_{i\!j}$ nichtnegativ sind: $a_{i\!j}\ge 0\,\forall i,j$.
\index{positive Matrix}%
\index{nichtnegative Matrix}%
Man schreibt $A>B$ bzw.~$A\ge B$ wenn $A-B>0$ bzw.~$A-B\ge 0$.
@@ -132,7 +132,7 @@ und dass daher für alle $n\ge 5$ die Matrix $A^n$ positiv ist.
Die Eigenschaft der Matrix $A$ von
\eqref{buch:wahrscheinlichkeit:eqn:diffusion}, dass $A^n>0$
-für genügend grosses $n$ ist bei Permutationsmatrizen nicht
+für genügend grosses $n$ ist, ist bei Permutationsmatrizen nicht
vorhanden.
Die Zyklen-Zerlegung einer Permutationsmatrix zeigt, welche
Unterräume von $\mathbb{R}^n$ die iterierten Bilder eines
@@ -144,14 +144,16 @@ Unterräumen statt.
\begin{beispiel}
Die Matrix
\begin{equation}
-A=\begin{pmatrix}
+A=\left(\begin{array}{ccc|ccc}
0.9&0.1& & & & \\
0.1&0.8&0.1& & & \\
&0.1&0.9& & & \\
+\hline
& & &0.9&0.1& \\
& & &0.1&0.8&0.1\\
& & & &0.1&0.9
-\end{pmatrix}
+\end{array}
+\right)
\label{buch:wahrscheinlichkeit:eqn:diffusionbloecke}
\end{equation}
besteht aus zwei $3\times 3$-Blöcken.
@@ -164,6 +166,7 @@ Teilmatrizen, aber die Matrix $A^n$ ist für alle $n$ nicht positiv.
\end{beispiel}
\begin{definition}
+\label{buch:positiv:def:primitiv}
Eine nichtnegative Matrix mit der Eigenschaft, dass $A^n>0$ für
ein genügend grosses $n$, heisst {\em primitiv}.
\index{primitive Matrix}%
@@ -323,6 +326,7 @@ gleiche Richtung haben (rot).
Hier dargestellt am Beispiel von Zahlen in der komplexen Zahlenebene.
In dieser Form wird die verallgemeinerte Dreiecksungleichung in
Satz~\ref{buch:wahrscheinlichkeit:satz:verallgdreieckC}
+angewendet.
\label{buch:wahrscheinlichkeit:fig:dreieck}}
\end{figure}
@@ -344,7 +348,7 @@ gewöhnliche Dreiecksungleichung.
Wir nehmen daher jetzt an, die Aussage sei für $n$ bereits bewiesen,
wir müssen sie für $n+1$ beweisen.
-Die Summe von $n+1$ Vektoren kann man $u=u_1+\dots+u_n$ und $v=u_{n+1}$
+Die Summe von $n+1$ Vektoren kann man in $u=u_1+\dots+u_n$ und $v=u_{n+1}$
aufteilen.
Es gilt nach der gewöhnlichen Dreiecksungleichung, dass
\[
@@ -465,8 +469,8 @@ Das ist nur möglich, wenn $\lambda > 0$.
Wenn $v$ ein Eigenvektor von $A$ ist, dann ist auch jedes Vielfache
davon ein Eigenvektor, insbesondere können einzelne Komponenten
des Vektors $v$ auch negativ sein.
-Der folgende Satz zeigt aber, dass man der Vektor aus den Beträgen
-von der Komponenten von $v$ ebenfalls ein Eigenvektor zum
+Der folgende Satz zeigt aber, dass der Vektor aus den Beträgen
+der Komponenten von $v$ ebenfalls ein Eigenvektor zum
gleichen Eigenwert ist.
Insbesondere gibt es immer einen nichtnegativen Eigenvektor.