aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/95-homologie/homologie.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/chapters/95-homologie/homologie.tex')
-rw-r--r--buch/chapters/95-homologie/homologie.tex321
1 files changed, 4 insertions, 317 deletions
diff --git a/buch/chapters/95-homologie/homologie.tex b/buch/chapters/95-homologie/homologie.tex
index 905ecc3..747c00f 100644
--- a/buch/chapters/95-homologie/homologie.tex
+++ b/buch/chapters/95-homologie/homologie.tex
@@ -34,321 +34,8 @@ Es soll möglich werden, kompliziertere Fragen des Zusammenhangs, zum
Beispiel das Vorhandensein von Löchern mit algebraischen Mitteln
zu analysieren.
-\subsection{Homologie eines Kettenkomplexes
-\label{buch:subsection:homologie-eines-kettenkomplexes}}
-Wegzusammenhang lässt sich untersuchen, indem man in der Triangulation
-nach Linearkombinationen von Kanten sucht, die als Rand die beiden Punkte
-haben.
-Zwei Punkte sind also nicht verbindbar und liegen damit in verschiedenen
-Komponenten, wenn die beiden Punkte nicht Rand irgend einer
-Linearkombination von Kanten sind.
-Komponenten können also identifiziert werden, indem man unter allen
-Linearkombinationen von Punkten, also $C_0$ all diejenigen ignoriert,
-die Rand einer Linearkombinationv on Kanten sind, also $\partial_1C_1$.
-Der Quotientenraum $H_0=C_0/\partial_1C_1$ enthält also für jede Komponente
-eine Dimension.
-
-Eine Dimension höher könnten wir danach fragen, ob sich ein geschlossener
-Weg zusammenziehen lässt.
-In der Triangulation zeichnet sich ein geschlossener Weg dadurch aus,
-dass jedes Ende einer Kante auch Anfang einer Folgekante ist, dass also
-der Rand der Linearkombination von Kanten 0 ist.
-Algebraisch bedeutet dies, dass wir uns für diejenigen Linearkombinationen
-$z\in C_1$ interessieren, die keinen Rand haben, für die also $\partial_1z=0$
-gilt.
-
-\begin{definition}
-Die Elemente von
-\[
-Z_k
-=
-Z_k^C
-=
-\{z\in C_k\;|\; \partial_k z = 0\}
-=
-\ker \partial_k
-\]
-heissen die {\em ($k$-dimensionalen) Zyklen} von $C_*$.
-\end{definition}
-
-In einem Dreieck ist der Rand ein geschlossener Weg, der sich zusammenziehen
-lässt, indem man ihn durch die Dreiecksfläche deformiert.
-Entfernt man aber die Dreiecksfläche, ist diese Deformation nicht mehr
-möglich.
-Einen zusammenziehbaren Weg kann man sich also als den Rand eines Dreiecks
-einer vorstellen.
-``Löcher'' sind durch geschlossene Wege erkennbar, die nicht Rand eines
-Dreiecks sein können.
-Wir müssen also ``Ränder'' ignorieren.
-
-\begin{definition}
-Die Elemente von
-\[
-B_k
-=
-B_k^C
-=
-\{\partial_{k+1}z\;|\; C_{k+1}\}
-=
-\operatorname{im} \partial_{k+1}
-\]
-heissen die {\em ($k$-dimensionalen) Ränder} von $C_*$.
-\end{definition}
-
-Algebraisch ausgedrückt interessieren uns also nur Zyklen, die selbst
-keine Ränder sind.
-Der Quotientenraum $Z_1/B_1$ ignoriert unter den Zyklen diejenigen, die
-Ränder sind, drückt also algebraisch die Idee des eindimensionalen
-Zusammenhangs aus.
-Wir definieren daher
-
-\begin{definition}
-Die $k$-dimensionale Homologiegruppe des Kettenkomplexes $C_*$ ist
-\[
-H_k(C) = Z_k/B_k = \ker \partial_k / \operatorname{im} \partial_{k+1}.
-\]
-Wenn nur von einem Kettenkomplex die Rede ist, kann auch $H_k(C)=H_k$
-abgekürzt werden.
-\end{definition}
-
-Die folgenden zwei ausführlichen Beispiele sollen zeigen, wie die
-Homologiegruppe $H_2$ die Anwesenheit eines Hohlraumes detektieren kann,
-der entsteht, wenn man aus einem Tetraeder das innere entfernt.
-
-\begin{beispiel}
-\begin{figure}
-\centering
-XXX Bild eines Tetraeders mit Bezeichnung der Ecken und Kanten
-\caption{Triangulation eines Tetraeders, die Orientierung von Kanten
-und Seitenflächen ist immer so gewählt, dass die Nummern der Ecken
-aufsteigend sind.
-\label{buch:homologie:tetraeder:fig}}
-\end{figure}
-Ein Tetraeder ist ein zweidmensionales Simplex, wir untersuchen seinen
-Kettenkomplex und bestimmen die zugehörigen Homologiegruppen.
-Zunächst müssen wir die einzelnen Mengen $C_k$ beschreiben und verwenden
-dazu die Bezeichnungen gemäss Abbildung~\ref{buch:homologie:tetraeder:fig}.
-$C_0$ ist der vierdimensionale Raum aufgespannt von den vier Ecken
-$0$, $1$, $2$ und $3$ des Tetraeders.
-$C_1$ ist der sechsdimensionale Vektorraum der Kanten
-\[
-k_0 = [0,1],\quad
-k_1 = [0,2],\quad
-k_2 = [0,3],\quad
-k_3 = [1,2],\quad
-k_4 = [1,3],\quad
-k_5 = [2,3]
-\]
-Der Randoperator $\partial_1$ hat die Matrix
-\[
-\partial_1
-=
-\begin{pmatrix*}[r]
--1&-1&-1& 0& 0& 0\\
- 1& 0& 0&-1&-1& 0\\
- 0& 1& 0& 1& 0&-1\\
- 0& 0& 1& 0& 1& 1
-\end{pmatrix*}.
-\]
-
-Wir erwarten natürlich, dass sich zwei beliebige Ecken verbinden lassen,
-dass es also nur eine Komponente gibt und dass damit $H_1=\Bbbk$ ist.
-Dazu beachten wir, dass das Bild von $\partial_1$ genau aus den Vektoren
-besteht, deren Komponentensumme $0$ ist.
-Das Bild $B_0$ von $\partial_1$ ist daher die Lösungsmenge der einen
-Gleichung
-\(
-x_0+x_1+x_2+x_3=0.
-\)
-Der Quotientenraum $H_0=Z_0/B_0 = C_0/\operatorname{im}\partial_1$
-ist daher wie erwartet eindimensional.
-
-Wir bestimmen jetzt die Homologiegruppe $H_1$.
-Da sich im Tetraeder jeder geschlossene Weg zusammenziehen lässt,
-erwarten wir $H_1=0$.
-
-Die Menge der Zyklen $Z_1$ wird bestimmt, indem man die Lösungsmenge
-des Gleichungssystems $\partial_1z=0$ bestimmt.
-Der Gauss-Algorithmus für die Matrix $\partial_1$ liefert das
-Schlusstableau
-\[
-\begin{tabular}{|>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}|}
-\hline
-k_0&k_1&k_2&k_3&k_4&k_5\\
-\hline
- 1& 0& 0& -1& -1& 0\\
- 0& 1& 0& 1& 0& -1\\
- 0& 0& 1& 0& 1& 1\\
- 0& 0& 0& 0& 0& 0\\
-\hline
-\end{tabular}
-\]
-Daraus lassen sich drei linear unabhängig eindimensionale Zyklen ablesen,
-die zu den Lösungsvektoren
-\[
-z_1
-=
-\begin{pmatrix*}[r]
-1\\
--1\\
-0\\
-1\\
-0\\
-0
-\end{pmatrix*},
-\qquad
-z_2
-=
-\begin{pmatrix*}[r]
-1\\
-0\\
--1\\
-0\\
-1\\
-0
-\end{pmatrix*},
-\qquad
-z_3
-=
-\begin{pmatrix*}[r]
-0\\
-1\\
--1\\
-0\\
-0\\
-1
-\end{pmatrix*}
-\]
-gehören.
-
-$C_2$ hat die vier Seitenflächen
-\[
-f_0=[0,1,2],\quad
-f_1=[0,1,3],\quad
-f_2=[0,2,3],\quad
-f_3=[1,2,3]
-\]
-als Basis.
-Der zweidimensionale Randoperator ist die $6\times 4$-Matrix
-\[
-\partial_2
-=
-\begin{pmatrix*}[r]
- 1& 1& 0& 0\\
--1& 0& 1& 0\\
- 0&-1&-1& 0\\
- 1& 0& 0& 1\\
- 0& 1& 0&-1\\
- 0& 0& 1& 1
-\end{pmatrix*}.
-\]
-Man kann leicht nachrechnen, dass $\partial_1\partial_2=0$ ist, wie es
-für einen Kettenkomplex sein muss.
-
-Um nachzurechnen, dass die Homologiegruppe $H_1=0$ ist, müssen wir jetzt
-nachprüfen, ob jeder Zyklus in $Z_1$ auch Bild der Randabbildung $\partial_2$
-ist.
-Die ersten drei Spalten von $\partial_2$ sind genau die drei Zyklen
-$z_1$, $z_2$ und $z_3$.
-Insbesondere lassen sich alle Zyklen als Ränder darstellen, die
-Homologiegruppe $H_1=0$ verschwindet.
-
-Die Zyklen in $C_2$ sind die Lösungen von $\partial_2z=0$.
-Der Gauss-Algorithmus für $\partial_2$ liefert das -Tableau
-\[
-\begin{tabular}{|>{$}c<{$}>{$}c<{$}>{$}c<{$}>{$}c<{$}|}
-\hline
-f_0&f_1&f_2&f_3\\
-\hline
-1&0&0& 1\\
-0&1&0&-1\\
-0&0&1& 1\\
-0&0&0& 0\\
-0&0&0& 0\\
-0&0&0& 0\\
-\hline
-\end{tabular}
-\]
-Daraus liest man ab, dass es genau einen Zyklus nämlich
-\[
-z
-=
-\begin{pmatrix}
--1\\1\\-1\\1
-\end{pmatrix}
-\]
-$Z_2$ besteht also aus Vielfachen des Vektors $z$.
-
-Da es nur ein zweidimensionales Simplex gibt, ist $C_3$ eindimensional.
-Die Randabbildung $\partial_3$ hat die Matrix
-\[
-\partial_3
-=
-\begin{pmatrix}
-1\\
--1\\
-1\\
--1
-\end{pmatrix}.
-\]
-Die Zyklen $Z_2$ und die Ränder $B_2$ bilden also dieselbe Menge, auch
-die Homologie-Gruppe $H_2$ ist $0$.
-
-Da es keine vierdimensionalen Simplizes gibt, ist $B_3=0$.
-Die Zyklen $Z_3$ bestehen aus den Lösungen von $\partial_3w=0$, da
-aber $\partial_3$ injektiv ist, ist $Z_3=0$.
-Daher ist auch $H_3=0$.
-\end{beispiel}
-
-\begin{beispiel}
-Für dieses Beispiel entfernen wir das Innere des Tetraeders, es entsteht
-ein Hohlraum.
-Am Kettenkomplex der Triangulation ändert sich nur, dass $C_3$ jetzt
-nur noch den $0$-Vektor enthält.
-Das Bild $B_2=\operatorname{im}\partial_3$ wird damit auch $0$-dimensional,
-während es im vorigen Beispiel eindimensional war.
-Die einzige Änderung ist also in der Homologiegruppe
-$H_2 = Z_2/B_2 = Z_2 / \{0\} \simeq \Bbbk$.
-Die Homologiegruppe $H_2$ hat jetzt Dimension $1$ und zeigt damit den
-Hohlraum an.
-\end{beispiel}
-
-\subsection{Induzierte Abbildung
-\label{buch:subsection:induzierte-abbildung}}
-Früher haben wurde eine Abbildung $f_*$ zwischen Kettenkomplexen $C_*$ und
-$D_*$ so definiert,
-dass sie mit den Randoperatoren verträglich sein muss.
-Diese Forderung bewirkt, dass sich auch eine lineare Abbildung
-\[
-H_k(f) \colon H_k(C) \to H_k(D)
-\]
-zwischen den Homologiegruppen ergibt, wie wir nun zeigen wollen.
-
-Um eine Abbildung von $H_k(C)$ nach $H_k(D)$ zu definieren, müssen wir
-zu einem Element von $H_k(C)$ ein Bildelement konstruieren.
-Ein Element in $H_k(C)$ ist eine Menge von Zyklen in $Z^C_k$, die sich
-nur um einen Rand in $B_k$ unterscheiden.
-Wir wählen also einen Zyklus $z\in Z_k$ und bilden ihn auf $f_k(z)$ ab.
-Wegen $\partial^D_kf(z)=f\partial^C_kz = f(0) =0 $ ist auch $f_k(z)$
-ein Zyklus.
-Wir müssen jetzt aber noch zeigen, dass eine andere Wahl des Zyklus
-das gleiche Element in $H_k(D)$ ergibt.
-Dazu genügt es zu sehen, dass sich $f(z)$ höchstens um einen Rand
-ändert, wenn man $z$ um einen Rand ändert.
-Sei also $b\in B^C_k$ ein Rand, es gibt also ein $w\in C_{k+1}$ mit
-$\partial^C_{k+1}w=b$.
-Dann gilt aber auch
-\[
-f_k(z+b)
-=
-f_k(z) + f_k(b)
-=
-f_k(z) + f_k(\partial^C_{k+1}w)
-=
-f_k(z) + \partial^D_{k+1}(f_k(w)).
-\]
-Der letzte Term ist ein Rand in $D_k$, somit ändert sich $f_k(z)$ nur
-um diesen Rand, wenn man $z$ um einen Rand ändert.
-$f_k(z)$ und $f_k(z+b)$ führen auf die selbe Homologieklasse.
-
+\input{chapters/95-homologie/homologieketten.tex}
+\input{chapters/95-homologie/basiswahl.tex}
+\input{chapters/95-homologie/eulerchar.tex}
+\input{chapters/95-homologie/induzierteabb.tex}