aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/95-homologie/simplex.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/chapters/95-homologie/simplex.tex')
-rw-r--r--buch/chapters/95-homologie/simplex.tex12
1 files changed, 6 insertions, 6 deletions
diff --git a/buch/chapters/95-homologie/simplex.tex b/buch/chapters/95-homologie/simplex.tex
index a38a507..08583bb 100644
--- a/buch/chapters/95-homologie/simplex.tex
+++ b/buch/chapters/95-homologie/simplex.tex
@@ -68,7 +68,7 @@ wobei die beiden positiven reellen Zahlen $t_0,t_1\in\mathbb{R}$ die
Bedingung $t_0 + t_1 = 1$ erfüllen.
Für ein eindimensionales Objekt brauchen wir also zwei Punkte und zwei
positive Parameter, die sich zu $1$ summieren.
-Die Mengen $\triangle_1=\{ (t_0,t_1)\mid t_i\ge 0, t_0+t_1=1\}$ kann also
+Die Menge $\triangle_1=\{ (t_0,t_1)\mid t_i\ge 0, t_0+t_1=1\}$ kann also
ganz allgemein als Parameterraum zur Beschreibung eines eindimensionalen Objektes
$\triangle_1$
mit den Endpunkten $0$ und $1$ dienen.
@@ -128,7 +128,7 @@ t_1\vec{p}_1
+
t_n\vec{p}_n
\end{equation}
-Eine solche Abbildung verallgemeinert also den Begriff einer Strecke
+Eine solche Abbildung verallgemeinert den Begriff einer Strecke
in einem Raum $\mathbb{R}^N$
auf höhere Dimensionen.
Sie ist durch die Eckpunkte vollständig vorgegeben, es reicht also
@@ -242,7 +242,7 @@ Die Adjazenzmatrix ordnet ihm die Linearkombination
A(G)\colon e_k=[v_i,v_j] \mapsto -[v_i] +[v_j]
= (-1)^0 [\widehat{v_i},v_j] + (-1)^1 [v_i,\widehat{v_j}]
=
-\partial_2 [v_i,v_j]
+\partial_1 [v_i,v_j]
\]
zu.
Die Adjazenzmatrix eines Graphen kann man also als den Randoperator
@@ -304,7 +304,7 @@ Summe müssen die Teile vor und nach $i$ daher separat betrachtet werden:
[P_0,\dots,\widehat{P_j},\dots,\widehat{P_i}\dots,P_l]
-
\sum_{j>i} (-1)^{i+j}
-[P_0,\dots,\widehat{P_i},\dots,\widehat{P_j}\dots,P_l]
+[P_0,\dots,\widehat{P_i},\dots,\widehat{P_j}\dots,P_l].
\notag
\end{align}
Auf der letzten Zeile sind die Summen über alle Paare
@@ -393,7 +393,7 @@ nur die ``Gestalt'' oder ``Topologie'' des Objekts.
Entfernungen zwischen Punkten sind ebenfalls von untergeordneter
Bedeutung, da sie bei Deformation nicht erhalten bleiben.
Der Begriff des ``topologischen Raumes'' fasst diese Ideen mathematisch
-präzise ein, eine genaue Definition würde aber an dieser Stelle zu weit
+präzise, eine genaue Definition würde aber an dieser Stelle zu weit
führen.
Stattdessen beschränken wir uns auf eine Klasse von Punktmengen, die man
mit Simplizes beschreiben kann.
@@ -419,7 +419,7 @@ auf ein dreidimensionales Simplex abgebildet werden.
\begin{beispiel}
\label{buch:homologie:projektion}
Sei $T$ ein reguläres Tetraeder mit den Ecken auf der dreidimensionalen
-Einheitskugel $B^3$.
+Einheitsvollkugel $B^3$.
Für jeden Richtungsvektor $x\ne 0$ sei $l(x)$ Entfernung vom Mittelpunkt des
Tetraeders bis zum Durchstosspunkt einer Geraden durch den Mittelpunkt
mit Richtungsvektor $x$ durch die Oberfläche des Tetraeders.