aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/clifford/1_Vektordarstellung.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/clifford/1_Vektordarstellung.tex')
-rw-r--r--buch/papers/clifford/1_Vektordarstellung.tex23
1 files changed, 11 insertions, 12 deletions
diff --git a/buch/papers/clifford/1_Vektordarstellung.tex b/buch/papers/clifford/1_Vektordarstellung.tex
index ac00a33..0bec4b6 100644
--- a/buch/papers/clifford/1_Vektordarstellung.tex
+++ b/buch/papers/clifford/1_Vektordarstellung.tex
@@ -1,9 +1,9 @@
\section{Vektoroperationen\label{clifford:section:Vektoroperationen}}
\rhead{Vektoroperationen}
-\subsection{Vektordarstellung\label{clifford:section:Vektordarstellung}}
+Das grundsätzliche Ziel der geometrischen Algebra ist, die lineare Algebra zu einer Algebra mit Multiplikation zu erweitern und dieses Produkt dann geometrisch interpretieren, um geometrische Probleme lösen zu können.
+ \subsection{Vektordarstellung\label{clifford:section:Vektordarstellung}}
Vektoren können neben der üblichen Spaltendarstellung, auch als Linearkombination aus Basisvektoren
-\begin{equation}
- \begin{split}
+\begin{align*}
\textbf{a}
&=
\begin{pmatrix}
@@ -20,7 +20,8 @@ Vektoren können neben der üblichen Spaltendarstellung, auch als Linearkombinat
+
a_n\begin{pmatrix}
0 \\ 0 \\ \vdots \\ 1
- \end{pmatrix} \\\
+ \end{pmatrix},\\
+\intertext{oder auch als}
&=
a_1\textbf{e}_1
+
@@ -29,17 +30,15 @@ Vektoren können neben der üblichen Spaltendarstellung, auch als Linearkombinat
\dots + a_n\textbf{e}_n
=
\sum_{i=1}^{n} a_i \textbf{e}_i
- \qquad
+ \quad
a_i \in \mathbb{R}
, \textbf{e}_i \in \mathbb{R}^n
- \end{split}
-\end{equation}
+\end{align*}
dargestellt werden.
-Diese Basisvektoren werden so gewählt, dass sie orthonormal sind.
-Um die Darstellung zu vereinfachen werden sie durch $\textbf{e}_1 , \textbf{e}_2, \dots$ ersetzt.
+Diese Basisvektoren werden so gewählt, dass sie orthonormiert sind.
\begin{beispiel}
Eine Linearkombination von Basisvektoren in $\mathbb{R}^4$ könnte wie folgt aussehen
- \begin{equation}
+ \begin{equation*}
\begin{pmatrix}
42 \\ 2 \\ 1291 \\ 4
\end{pmatrix}
@@ -68,6 +67,6 @@ Eine Linearkombination von Basisvektoren in $\mathbb{R}^4$ könnte wie folgt aus
1291\textbf{e}_3
+
4\textbf{e}_4.
- \end{equation}
-Dieses Beispiel ist für einen vier dimensionalen Vektor, dies kann selbstverständlich für beliebig viele Dimensionen nach demselben Schema erweitert werden.
+ \end{equation*}
+Dieses Beispiel ist für einen vierdimensionalen Vektor, dies kann selbstverständlich für beliebig viele Dimensionen nach demselben Schema erweitert werden.
\end{beispiel}