aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/clifford/3_MultiplikationVektoren.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/clifford/3_MultiplikationVektoren.tex')
-rw-r--r--buch/papers/clifford/3_MultiplikationVektoren.tex184
1 files changed, 91 insertions, 93 deletions
diff --git a/buch/papers/clifford/3_MultiplikationVektoren.tex b/buch/papers/clifford/3_MultiplikationVektoren.tex
index 841dde4..0969b89 100644
--- a/buch/papers/clifford/3_MultiplikationVektoren.tex
+++ b/buch/papers/clifford/3_MultiplikationVektoren.tex
@@ -1,11 +1,14 @@
\subsection{Multiplikation von Vektoren}
-Was geschieht nun wenn zwei beliebige Vektoren,$u$ und $v$, miteinander multipliziert werden?
+Was geschieht nun wenn zwei beliebige Vektoren, $u$ und $v$
\begin{equation}
\textbf{u} =
\sum_{i=1}^{n} u_i \textbf{e}_i
\qquad
\textbf{v} = \sum_{i=1}^{n} v_i \textbf{e}_i
\end{equation}
+ miteinander multipliziert werden?
+
+ Wieder werden die Vektoren zuerst als Linearkombinationen darstellen und danach in zwei Summen aufgeteilt, eine Summe mit quadrierten Termen und eine Summe mit Mischtermen
\begin{equation}
\begin{split}
\textbf{u}\textbf{v}
@@ -18,12 +21,12 @@ Was geschieht nun wenn zwei beliebige Vektoren,$u$ und $v$, miteinander multipli
\right)
=
\sum_{i=1}^n u_iv_i\underbrace{\textbf{e}_i^2}_{1}
- + \sum_{\begin{subarray}{l}i,j=1\\i \neq j\end{subarray}}^n u_iv_j\textbf{e}_i\textbf{e}_j
+ + \sum_{\begin{subarray}{l}i,j=1\\i \neq j\end{subarray}}^n u_iv_j\textbf{e}_i\textbf{e}_j,
\end{split}
\end{equation}
+wobei die Summe der quadrierten Termen bereits bekannt vorkommen könnte, es ist nämlich das Skalarprodukt von $u$ und $v$. Die Summe der Mischterme bilden etwas neues, dass wir das äussere Produkt von $u$ und $v$ nennen.
\begin{beispiel}
Multiplikation von Vektoren in $\mathbb{R}^2$
-\end{beispiel}
\begin{equation}
\begin{split}
\textbf{u}\textbf{v}
@@ -44,7 +47,7 @@ Was geschieht nun wenn zwei beliebige Vektoren,$u$ und $v$, miteinander multipli
\underbrace{(u_1v_2 - u_2v_1)\textbf{e}_1\textbf{e}_2}_{\text{Äusseres Produkt}}
\end{split}
\end{equation}
-Der linke Teil dieser Multiplikation ergibt das Skalarprodukt der zwei Vektoren, der rechte Term ergibt etwas neues das sich das äussere Produkt der zwei Vektoren nennt.
+\end{beispiel}
\subsubsection{Äusseres Produkt}
Das äussere Produkt von zwei Vektoren wird mit einem $\wedge$ dargestellt
\begin{equation}
@@ -53,123 +56,118 @@ Das äussere Produkt von zwei Vektoren wird mit einem $\wedge$ dargestellt
\sum_{\begin{subarray}{l}i,j=1\\i \neq j\end{subarray}}^n u_iv_j\textbf{e}_i\textbf{e}_j
\end{equation}
\begin{beispiel}
-Äusseres Produkt von zwei Vektoren in $\mathbb{R}^3$
-\end{beispiel}
+Das äusseres Produkt von zwei Vektoren in $\mathbb{R}^3$ ist
\begin{equation}
- \begin{split}
- u \wedge v
- &=
- u_1v_2\textbf{e}_1\textbf{e}_2
- +
- u_1v_3\textbf{e}_1\textbf{e}_3
- +
- u_2v_2\textbf{e}_2\textbf{e}_3
- +
- u_2v_1\textbf{e}_2\textbf{e}_1
- +
- u_3v_1\textbf{e}_3\textbf{e}_1
- +
- u_3v_2\textbf{e}_3\textbf{e}_2 \\\
- &=
- (u_1v_2 - u_2v_1)\textbf{e}_1\textbf{e}_2
- +
- (u_1v_3 - v_3u_1)\textbf{e}_1\textbf{e}_3
- +
- (u_2v_3 - u_3v_2)\textbf{e}_2\textbf{e}_3
- \end{split}
+ \begin{split}
+ u \wedge v
+ &=
+ u_1v_2\textbf{e}_1\textbf{e}_2
+ +
+ u_1v_3\textbf{e}_1\textbf{e}_3
+ +
+ u_2v_2\textbf{e}_2\textbf{e}_3
+ +
+ u_2v_1\textbf{e}_2\textbf{e}_1
+ +
+ u_3v_1\textbf{e}_3\textbf{e}_1
+ +
+ u_3v_2\textbf{e}_3\textbf{e}_2 \\\
+ &=
+ (u_1v_2 - u_2v_1)\textbf{e}_1\textbf{e}_2
+ +
+ (u_1v_3 - v_3u_1)\textbf{e}_1\textbf{e}_3
+ +
+ (u_2v_3 - u_3v_2)\textbf{e}_2\textbf{e}_3.
+ \end{split}
\end{equation}
-Im letzten Schritt des Beispiels wurden nun, mit Hilfe der antikommutativität des Produkts, die Vektorprodukte, welche die gleichen Einheitsvektoren beinhalten, zusammengefasst. Dieses Vorgehen kann man auch allgemein anwenden, wie in den Gleichungen \ref{eq:u_wedge_v}-\ref{eq:u_wedge_v_5} hergeleitet.
+\end{beispiel}
+
+Im letzten Schritt des Beispiels wurden nun, mit Hilfe der antikommutativität des Produkts, die Vektorprodukte, welche die gleichen Einheitsvektoren beinhalten, zusammengefasst. Dieses Vorgehen kann man auch allgemein anwenden, wie in den Gleichungen \eqref{eq:u_wedge_v}-\eqref{eq:u_wedge_v_5} hergeleitet. Die Summe,
\begin{align}
\textbf{u}\wedge \textbf{v}
&=
\sum_{\begin{subarray}{l}i,j=1\\i \neq j\end{subarray}}^n
- u_iv_j\textbf{e}_i\textbf{e}_j
+ u_iv_j\textbf{e}_i\textbf{e}_j,
\label{eq:u_wedge_v}
- \\
+ \intertext{wird in zwei verschiedene Summen aufgeteilt.
+ Wobei die linke Summe jeweils den Basisvektor mit dem höheren Index an erster Stelle und die rechte Summe diesen jeweils an zweiter Stelle hat}
\label{eq:u_wedge_v_1}
&=
\sum_{\begin{subarray}{l}i,j=1\\i < j\end{subarray}}^n u_iv_j\textbf{e}_i\textbf{e}_j
+
- \sum_{\begin{subarray}{l}i,j=1\\j < i\end{subarray}}^n u_iv_j\textbf{e}_i\textbf{e}_j
- \\
+ \sum_{\begin{subarray}{l}i,j=1\\j < i\end{subarray}}^n u_iv_j\textbf{e}_i\textbf{e}_j.
+ \intertext{Nun werden die Indexe der zweiten Summe vertauscht}
\label{eq:u_wedge_v_2}
&=
\sum_{\begin{subarray}{l}i,j=1\\i < j\end{subarray}}^n u_iv_j\textbf{e}_i\textbf{e}_j
+
- \sum_{\begin{subarray}{l}i,j=1\\i < j\end{subarray}}^n u_jv_i\textbf{e}_j\textbf{e}_i
- \\
- \label{eq:u_wedge_v_3}
+ \sum_{\begin{subarray}{l}i,j=1\\i < j\end{subarray}}^n u_jv_i\textbf{e}_j\textbf{e}_i,
+ \intertext{und diese wird nun mit Hilfe der Antikommutativität umgeformt zu}
&=
\sum_{\begin{subarray}{l}i,j=1\\i < j\end{subarray}}^n u_iv_j\textbf{e}_i\textbf{e}_j
-
- \sum_{\begin{subarray}{l}i,j=1\\i < j\end{subarray}}^n u_jv_i\textbf{e}_i\textbf{e}_j
- \\
+ \sum_{\begin{subarray}{l}i,j=1\\i < j\end{subarray}}^n u_jv_i\textbf{e}_i\textbf{e}_j.
+ \intertext{Nun können die zwei Summen wieder zusammengefasst werden}
\label{eq:u_wedge_v_4}
&=
- \sum_{\begin{subarray}{l}i,j=1\\i < j\end{subarray}}^n (u_iv_j -u_jv_i)\textbf{e}_i\textbf{e}_j
- \\
- \label{eq:u_wedge_v_5}
+ \sum_{\begin{subarray}{l}i,j=1\\i < j\end{subarray}}^n (u_iv_j -u_jv_i)\textbf{e}_i\textbf{e}_j.
+ \intertext{Der Term in der Summe könnte einem bereits bekannt vorkommen, es ist nämlich die Determinante einer Matrix mit $u$ und $v$ als ihre Spalten}
&=
+ \label{eq:u_wedge_v_5}
\sum_{\begin{subarray}{l}i,j=1\\i < j\end{subarray}}^n \begin{vmatrix}
u_i & v_i \\
u_j & v_j
- \end{vmatrix}\textbf{e}_i\textbf{e}_j
+ \end{vmatrix}\textbf{e}_i\textbf{e}_j.
\end{align}
-Die Summe aus \ref{eq:u_wedge_v_1} wird in \ref{eq:u_wedge_v} in zwei verschiedene Summen aufgeteilt.
-Wobei die linke Summe jeweils den Basisvektor mit dem höheren Index an erster Stelle und die rechte Summe diesen jeweils an zweiter Stelle hat.
-\newline
-Bei \ref{eq:u_wedge_v_2} werden die Indexe der zweiten Summe vertauscht, damit man nun bei beiden Teilen die gleiche Summe hat.
-Danach werden in \ref{eq:u_wedge_v_3}, mit Hilfe der Antikommutativität, die Einheitsvektoren der zweiten Summe vertauscht.
-\newline
-Nun können die Summen, wie in \ref{eq:u_wedge_v_4} wieder in eine Summe zusammengefasst werden.
-\newline
-Der Term in der Klammer in \ref{eq:u_wedge_v_4} kann auch als Determinante einer 2x2 Matrix dargestellt werden, was in \ref{eq:u_wedge_v_5} gemacht wird.
-\newline
-Die Determinante einer Matrix beschreibt welche von den Spaltenvektoren aufgespannt wird, wie in Abbildung \ref{figure:det} dargestellt.
-\begin{figure}
-\centering
-\begin{tikzpicture}
- \draw[thin,gray!40] (0,0) grid (4,4);
- \draw[<->] (0,0)--(4,0) ;
- \draw[<->] (0,0)--(0,4) ;
- \draw[line width=0,fill=gray!40] (0,0)--(3,1)--(4,3)--(1,2);
- \draw[line width=2pt,blue,-stealth](0,0)--(3,1) node[anchor=north
- west]{$\boldsymbol{u}$};
- \draw[line width=2pt,red,-stealth](0,0)--(1,2) node[anchor=south east]{$\boldsymbol{v}$};
- \draw[black] (2,1.5)--(-0.5,2.5) node[anchor = east]{$\begin{vmatrix}
- u_i & v_i \\
- u_j & v_j
- \end{vmatrix} = u_iv_j - v_iu_j$};
-\end{tikzpicture}
-\caption{Geometrische Interpretation der Determinante einer 2x2 Matrix\label{figure:det}}
+Die Determinante einer Matrix beschreibt die Fläche, welche von den Spaltenvektoren aufgespannt wird, wie in Abbildung \ref{figure:det} dargestellt.
+\begin{figure}[htb]
+ \centering
+ \begin{minipage}[t]{.45\linewidth}
+ \centering
+ \begin{tikzpicture}
+ \draw[thin,gray!40] (0,0) grid (4,4);
+ \draw[<->] (0,0)--(4,0) ;
+ \draw[<->] (0,0)--(0,4) ;
+ \draw[line width=0,fill=gray!40] (0,0)--(3,1)--(4,3)--(1,2);
+ \draw[line width=2pt,blue,-stealth](0,0)--(3,1) node[anchor=north
+ west]{$\boldsymbol{u}$};
+ \draw[line width=2pt,red,-stealth](0,0)--(1,2) node[anchor=south east]{$\boldsymbol{v}$};
+ \draw[black] (2,1.5)--(1.8,3.2) node[anchor = south]{$\begin{vmatrix}
+ u_i & v_i \\
+ u_j & v_j
+ \end{vmatrix} = u_iv_j - v_iu_j$};
+ \end{tikzpicture}
+ \caption{Geometrische Interpretation der Determinante einer $2 \times 2$ Matrix\label{figure:det}}
+ \end{minipage}%
+ \hfill%
+ \begin{minipage}[t]{.45\linewidth}
+ \centering
+ \begin{tikzpicture}
+ \draw[thin,gray!40] (0,0) grid (4,4);
+ \draw[<->] (0,0)--(4,0) node[right]{$x$};
+ \draw[<->] (0,0)--(0,4) node[above]{$y$};
+ \draw[line width=0,fill=gray!40] (0,0)--(3,1)--(4,3)--(1,2);
+ \draw[line width=2pt,blue,-stealth](0,0)--(3,1) node[anchor=north
+ west]{$\boldsymbol{u}$};
+ \draw[line width=2pt,red,-stealth](0,0)--(1,2) node[anchor=south east]{$\boldsymbol{v}$};
+ \draw[->] (2.15,1.5) arc (0:310:0.3);
+ \draw[black] (2,1.5)--(2.5,3.2) node[anchor = south]{$u\wedge v = \begin{vmatrix}
+ u_i & v_i \\
+ u_j & v_j
+ \end{vmatrix} e_1e_2 = (u_iv_j - v_iu_j)\textbf{e}_1\textbf{e}_2$};
+ \end{tikzpicture}
+ \caption{Geometrische Interpretation des äusseren Produktes \label{figure:wedge}}
+ \end{minipage}
\end{figure}
-\newline
Das äussere Produkt besteht nun also aus der Summe
- $\sum_{\begin{subarray}{l}i,j=1\\i < j\end{subarray}}^n$
+ \(\sum_{\begin{subarray}{l}i,j=1\\i < j\end{subarray}}^n\)
von Flächen
- $\begin{vmatrix}
- u_i & v_i \\
- u_j & v_j
- \end{vmatrix}$, welche in $\textbf{e}_i\textbf{e}_j$ aufgespannt sind, wie man in \ref{eq:u_wedge_v_5} sieht.
+ \(\begin{vmatrix}
+ u_i & v_i \\
+ u_j & v_j
+ \end{vmatrix}\)
+, welche in $\textbf{e}_i\textbf{e}_j$ aufgespannt sind, wie man in \ref{eq:u_wedge_v_5} sieht.
Dieses Produkt $\textbf{e}_i\textbf{e}_j$ der Basisvektoren interpretiert man als Umlaufrichtung.
Wobei die gebildete Fläche in Richtung des ersten Vektors umschritten wird.
-Dies ist in \ref{figure:wedge} dargestellt, wobei bei diesem Beispiel die Umlaufrichtung im Gegenuhrzeigersinn ist, da die Fläche in Richtung u umschritten wird.
+Dies ist in Abbildung \ref{figure:wedge} dargestellt, wobei bei diesem Beispiel die Umlaufrichtung im Gegenuhrzeigersinn ist, da die Fläche in Richtung u umschritten wird.
Diese Fläche mit einer Richtung nennt man in der geometrischen Algebra einen Bivektor, da er eine Art zwei dimensionaler Vektor ist.
-\begin{figure}
-\centering
-\begin{tikzpicture}
- \draw[thin,gray!40] (0,0) grid (4,4);
- \draw[<->] (0,0)--(4,0) node[right]{$x$};
- \draw[<->] (0,0)--(0,4) node[above]{$y$};
- \draw[line width=0,fill=gray!40] (0,0)--(3,1)--(4,3)--(1,2);
- \draw[line width=2pt,blue,-stealth](0,0)--(3,1) node[anchor=north
- west]{$\boldsymbol{u}$};
- \draw[line width=2pt,red,-stealth](0,0)--(1,2) node[anchor=south east]{$\boldsymbol{v}$};
- \draw[->] (2.15,1.5) arc (0:310:0.3);
- \draw[black] (2,1.5)--(-0.5,2.5) node[anchor = east]{$u\wedge v = \begin{vmatrix}
- u_i & v_i \\
- u_j & v_j
- \end{vmatrix} e_1e_2 = (u_iv_j - v_iu_j)\textbf{e}_1\textbf{e}_2$};
-\end{tikzpicture}
-\caption{Geometrische Interpretation des äusseren Produkt in $\mathbb{R}^2$\label{figure:wedge}}
-\end{figure} \ No newline at end of file