aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/ifs/references.bib
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/ifs/references.bib')
-rw-r--r--buch/papers/ifs/references.bib33
1 files changed, 14 insertions, 19 deletions
diff --git a/buch/papers/ifs/references.bib b/buch/papers/ifs/references.bib
index fbf75f4..817c5a4 100644
--- a/buch/papers/ifs/references.bib
+++ b/buch/papers/ifs/references.bib
@@ -4,15 +4,6 @@
% (c) 2020 Autor, Hochschule Rapperswil
%
-@online{ifs:bibtex,
- title = {BibTeX},
- url = {https://de.wikipedia.org/wiki/BibTeX},
- date = {2020-02-06},
- year = {2020},
- month = {2},
- day = {6}
-}
-
@online{ifs:chaos,
title = {Chaosspiel},
url = {https://de.wikipedia.org/wiki/Iteriertes_Funktionensystem#Chaosspiel},
@@ -38,16 +29,6 @@
isbn = {0-471-92287-0},
}
-@article{ifs:mendezmueller,
- author = { Tabea Méndez and Andreas Müller },
- title = { Noncommutative harmonic analysis and image registration },
- journal = { Appl. Comput. Harmon. Anal.},
- year = 2019,
- volume = 47,
- pages = {607--627},
- url = {https://doi.org/10.1016/j.acha.2017.11.004}
-}
-
@Inbook{ifs:Rousseau2012,
author= {Rousseau, Christiane
and Saint-Aubin, Yvan
@@ -64,4 +45,18 @@
url={https://doi.org/10.1007/978-3-642-30092-9_11}
}
+@article{ifs:pifs,
+ title = {Applications of Partitioned Iterated Function Systems in Image and Video Compression},
+ journal = {Journal of Visual Communication and Image Representation},
+ volume = 7,
+ number = {2},
+ pages = {144-154},
+ year = 1996,
+ issn = {1047-3203},
+ doi = {https://doi.org/10.1006/jvci.1996.0014},
+ url = {https://www.sciencedirect.com/science/article/pii/S1047320396900140},
+ author = {Guojun Lu and Toon Lin Yew},
+ abstract = {Iterated function systems (IFS) have been used to compress image data. Because of difficulty in finding IFS in natural images, a technique based on partitioned IFS (PIFS) has been proposed for image compression. In this technique, an image to be compressed is divided into nonoverlapping blocks. For each block an affine transformation is found in the image. This set of affine transformations (called PIFS) corresponds to a unique image. In the simplest case, images are partitioned into fixed size blocks. In this paper, we investigate image and video compression techniques using variable block sizes based on the quadtree partition. One property of images generated using PIFS is scalability: they have fine detail in any scale. We exploit this property to reduce required compression time and improve compression performance. There are large amounts of temporal redundancy between fames of a video sequence. We describe a method to remove temporal redundancies effectively using a quadtree partitioning technique. We have implemented the above schemes to compress image and video sequences and will report our experimental results.}
+}
+