aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/punktgruppen/symmetry.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/punktgruppen/symmetry.tex')
-rw-r--r--buch/papers/punktgruppen/symmetry.tex21
1 files changed, 18 insertions, 3 deletions
diff --git a/buch/papers/punktgruppen/symmetry.tex b/buch/papers/punktgruppen/symmetry.tex
index 4a8d911..ec06046 100644
--- a/buch/papers/punktgruppen/symmetry.tex
+++ b/buch/papers/punktgruppen/symmetry.tex
@@ -22,18 +22,23 @@ Wie wir jedoch später sehen werden, ist das Konzept der Symmetrie eigentlich vi
In Abbildung \ref{fig:punktgruppen:geometry-example} haben wir einige Formen, die offensichtlich symmetrisch sind.
Zum Beispiel hat das Quadrat eine Gerade, an der es gespiegelt werden kann, ohne sein Aussehen zu verändern.
Regelmässige Polygone mit \(n\) Seiten sind auch gute Beispiele, um eine diskrete Rotationssymmetrie zu veranschaulichen, was bedeutet, dass eine Drehung um einen Punkt um einen bestimmten Winkel \(360^\circ/n\) die Figur unverändert lässt.
-Das letzte Beispiel auf der rechts ist eine unendliche Rotationssymmetrie. Sie wird so genannt, weil es unendlich viele Werte für den Drehwinkel \(\alpha \in \mathbb{R}\) gibt, die die Form unverändert lassen.
+Das letzte Beispiel in Abbildung~\ref{fig:punktgruppen:geometry-example} rechts ist eine unendliche Rotationssymmetrie. Sie wird so genannt, weil es unendlich viele Werte für den Drehwinkel \(\alpha \in \mathbb{R}\) gibt, die die Form unverändert lassen.
+
Ein Objekt kann mehr als nur eine Symmetrie aufweisen.
Zum Beispiel kann das Quadrat in Abbildung \ref{fig:punktgruppen:geometry-example} nicht nur um \(\sigma\) sondern auch diagonal gespiegelt werden oder um \(90^\circ\) gedreht werden.
Fasst man die möglichen Symmetrien zusammen, entsteht eine Symmetriegruppe.
\begin{definition}[Symmetriegruppe]
+\index{Symmetriegruppe}%
Seien \(g\) und \(h\) umkehrbare Operationen, sogenannte Symmetrieoperationen, die ein mathematisches Objekt unverändert lassen.
Die Komposition \(h\circ g\) definieren wir als die Anwendung der Operationen nacheinander.
Alle möglichen Symmetrieoperationen bilden unter Komposition eine Gruppe, die Symmetriegruppe genannt wird.
+\index{Komposition}%
\end{definition}
Eine Gruppe benötigt ausserdem auch zwingend ein neutrales Element, welches wir mit \(\mathds{1}\) bezeichnen.
+\index{neutrales Element}%
+\index{1@$\mathds{1}$}%
Die Anwendung der neutralen Operation ist gleichbedeutend damit, alles unverändert zu lassen.
Weiterhin muss in einer Gruppe für jede Operation \(g\) auch eine inverse Operation \(g^{-1}\) vorkommen, die rückgängig macht, was \(g\) getan hat.
Somit ist \(\mathds{1}\) auch äquivalent dazu, eine Operation und dann ihre Inverse anzuwenden.
@@ -41,11 +46,16 @@ Somit ist \(\mathds{1}\) auch äquivalent dazu, eine Operation und dann ihre Inv
Das liegt daran, dass in manchen Fällen die Zusammensetzung algebraisch durch eine Multiplikation berechnet wird.
Die Verwendung einer multiplikativen Schreibweise ermöglicht es, einige Ausdrücke kompakter zu schreiben, z.B.
durch Verwendung von Potenzen \(r^n = r\circ r \circ \cdots r\circ r\) für eine wiederholte Komposition.
+\index{Potenzen von Symmetrieoperationen}%
+\index{wiederholte Komposition}%
\begin{definition}[Zyklische Untergruppe, Erzeuger]
+\index{zyklische Gruppe}%
+\index{Erzeuger}%
Sei \(g\) ein Element einer Symmetriegruppe \(G\).
Alle möglichen Kompositionen von \(g\) und \(g^{-1}\) bilden eine sogenannte zyklische Untergruppe von \(G\), wobei \(g\) Erzeuger der Untergruppe genannt wird.
Die von \(g\) erzeugte Untergruppe \(\langle g \rangle = \{ g^k : k \in \mathbb{Z} \}\) wird mit spitzen Klammern bezeichnet.
+\index{g@$\langle g\rangle$}%
\end{definition}
\begin{beispiel}
Um die Syntax zu verstehen, betrachten wir eine durch \(a\) erzeugte Gruppe \(G = \langle a \rangle\).
@@ -53,12 +63,14 @@ durch Verwendung von Potenzen \(r^n = r\circ r \circ \cdots r\circ r\) für eine
\end{beispiel}
\begin{beispiel}
Als anschaulicheres Beispiel können wir eine zyklische Untergruppe des \(n\)-Gon formalisieren.
+\index{n-Gon@$n$-Gon}%
Wir bezeichnen mit \(r\) eine Drehung im Gegenuhrzeigersinn von \(360^\circ/n\) um einen Punkt.
Diese Definition reicht aus, um die gesamte Symmetriegruppe
\[
C_n = \langle r \rangle
= \{\mathds{1}, r, r^2, \ldots, r^{n-1}\}
\]
+\index{Cn@$C_n$}%
der Drehungen eines \(n\)-Gons zu erzeugen.
Das liegt daran, dass wir durch die mehrfache Verwendung von \(r\) jeden Winkel erzeugen k\"onnen, der die Rotationssymmetrie bewahrt.
In ähnlicher Weise, aber weniger interessant, enthält die Reflexionssymmetriegruppe \(\langle\sigma\rangle\) nur \(\left\{\mathds{1}, \sigma\right\}\), weil \(\sigma^2 = \mathds{1}\).
@@ -104,14 +116,17 @@ Die anschliessende Frage ist dann, ob wir bereits mathematische Objekte haben, m
Die Antwort lautet natürlich ja.
Um es formaler zu beschreiben, werden wir einige Begriffe einführen.
\begin{definition}[Gruppenhomomorphismus]
+\index{Gruppenhomomorphismus}%
\(G\) und \(H\) seien Gruppen mit unterschiedlichen Operationen \(\diamond\) bzw.
\(\star\).
Ein Homomorphismus\footnote{ Für eine ausführlichere Diskussion siehe \S\ref{buch:grundlagen:subsection:gruppen} im Buch.} ist eine Funktion \(f: G \to H\), so dass für jedes \(a, b \in G\) gilt \(f(a\diamond b) = f(a) \star f(b)\).
+\index{Homomorphismus}%
Man sagt, dass der Homomorphismus \(f\) \(G\) in \(H\) transformiert.
\end{definition}
\begin{beispiel}
Die Rotationssymmetrie des Kreises \(C_\infty\), mit einem unendlichen Kontinuum von Werten \(\alpha \in \mathbb{R}\), entspricht genau dem komplexen Einheitskreis.
- Der Homomorphismus \(\phi: C_\infty \to \mathbb{C}\) ist durch die Eulersche Formel \(\phi(r) = e^{i\alpha}\) gegeben.
+\index{Cunendlich@$C_{\infty}$}%
+ Der Homomorphismus \(\varphi: C_\infty \to \mathbb{C}\) ist durch die Eulersche Formel \(\varphi(r) = e^{i\alpha}\) gegeben.
\end{beispiel}
\begin{definition}[Darstellung einer Gruppe]
@@ -131,7 +146,7 @@ Um es formaler zu beschreiben, werden wir einige Begriffe einführen.
\sin(2\pi k/n) & \cos(2\pi k/n)
\end{pmatrix}
\]
- definierte Funktion von \(C_n\) nach \(O(2)\) ist eine Darstellung von \(C_n\).
+ definierte Funktion von \(C_n\) nach \(\operatorname{O}(2)\) ist eine Darstellung von \(C_n\).
In diesem Fall ist die erste Gruppenoperation die Komposition und die zweite die Matrixmultiplikation.
Man kann überprüfen, dass \(\Phi(r^2 \circ r) = \Phi(r^2)\Phi(r)\).
\end{beispiel}