aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/reedsolomon/dtf.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/reedsolomon/dtf.tex')
-rw-r--r--buch/papers/reedsolomon/dtf.tex111
1 files changed, 61 insertions, 50 deletions
diff --git a/buch/papers/reedsolomon/dtf.tex b/buch/papers/reedsolomon/dtf.tex
index e9aacfb..4552bed 100644
--- a/buch/papers/reedsolomon/dtf.tex
+++ b/buch/papers/reedsolomon/dtf.tex
@@ -1,74 +1,85 @@
%
-% teil3.tex -- Beispiel-File für Teil 3
+% dtf.tex -- Idee mit DFT
%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Übertragung mit hilfe der Diskrete Fourier Transformation
+\section{Übertragung mit Hilfe der Diskrten Fourientransformation
\label{reedsolomon:section:dtf}}
\rhead{Umwandlung mit DTF}
-Um die Polynominterpolation zu umgehen, gehen wir nun über in die Fourientransformation.
+Um die Polynominterpolation zu umgehen, gehen wir nun über in die Fourietransformation.
Dies wird weder eine Erklärung der Forientransorfmation, noch ein genauer gebrauch für den Reed-Solomon-Code.
-Dieser Abschnitt zeigt nur wie die Fourientransformation auf Fehler reagiert.
-wobei sie dann bei späteren Berchnungen ganz nützlich ist.
+Dieser Abschnitt zeigt nur wie die Fourietransformation auf Fehler reagiert.
+Das ganze zeigen wir mit einem Beispiel einer Übertragung von Zahlen mit Hilfe der Fourietransformation.
\subsection{Diskrete Fourietransformation Zusamenhang
\label{reedsolomon:subsection:dtfzusamenhang}}
Mit hilfe der Fourietransformation werden die \textcolor{blue}{blauen Datenpunkte} transformiert,
zu den \textcolor{darkgreen}{grünen Übertragungspunkten}.
Durch eine Rücktransformation könnnen die \textcolor{blue}{blauen Datenpunkte} wieder rekonstruiert werden.
-Nun zur definition der Diskrete Fourietransformation, diese ist definiert als
-\begin{equation}
- \hat{c}_{k}
- = \frac{1}{N} \sum_{n=0}^{N-1}
- {f}_n \cdot e^{-\frac{2\pi j}{N} \cdot kn}
- ,\label{reedsolomon:DFT}
-\end{equation}
-wenn man nun
-\begin{equation}
- w =
- e^{-\frac{2\pi j}{N} k}
- \label{reedsolomon:DFT_summand}
-\end{equation}
-ersetzte, und $N$ konstantbleibt, erhält man
-\begin{equation}
- \hat{c}_{k}=
- \frac{1}{N}( {f}_0 w^0 + {f}_1 w^1 + {f}_2 w^2 + \dots + {f}_{N-1} w^N)
- \label{reedsolomon:DFT_polynom}
-\end{equation}
-was überaust ähnlich zu unserem Polynomidee ist.
-\subsection{Beispiel
+\subsubsection{Beispiel einer Übertragung
\label{reedsolomon:subsection:Übertragungsabfolge}}
Der Auftrag ist nun 64 Daten zu übertragen und nach 32 Fehler abzusicheren,
16 Fehler erkennen und rekonstruieren.
-Dieser Auftrag soll mittels Fouriertransformation bewerkstelligt werden.
-In der Abbildung \ref{reedsolomon:subsection:Übertragungsabfolge} sieht man dies Schritt für schritt,
+Dieser Auftrag soll mittels Fouriertransformation bewerkstelligt werden.
+In der Abbildung \ref{reedsolomon:subsection:Übertragungsabfolge} sieht man dies Schritt für Schritt,
und hier werden die einzelne Schritte erklärt:
\begin{enumerate}[(1)]
-\item Das Signal hat 64 die Daten, Zahlen welche übertragen werden sollen.
-Dabei zusätzlich nach 16 Fehler abgesichert, macht insgesamt 96 Übertragungszahlen.
-(siehe Abschnitt \externaldocument{papers/reedsolomon/idee}\ref{reedsolomon:section:Fehlerkorrekturstellen})
-Die 32 Fehlerkorrekturstellen werden als Null Übertragen
-\item Nun wurde mittels der diskreten Fourientransformation diese 96 codiert.
-Das heisst alle Informationen ist in alle Zahlenvorhanden. (Auch die Fehlerkorrekturstellen Null)
-\item Nun kommen drei Fehler dazu an den Übertragungsstellen 7, 21 und 75.(die Skala ist Rechts)
-Die Fehler können auf den ganzen 96 Übertragungswerten liegen, wie die 75 zeigt.
-\item Dieses wird nun Empfangen und mittels inversen diskreten Fourientransormation, wieder rücktransformiert.(Iklusive der Fehler)
-\item Nun sieht man den Fehler im Decodieren in den Übertragungsstellen 64 bis 96, da es dort nicht mehr Null ist.
-\item Nimmt man nun nur diese Stellen 64 bis 96, dies definieren wir als Syndrom, und transformiert nur dieses Syndrom.
-\item Bekommt man die Fehlerstellen wieder, zwar nichtso genau, dennoch erkennt man wo die Fehler stattgefunden haben.
-Dies definieren wir als Locator.
-\end{enumerate}
-Nun haben wir mit Hilfe der Fourietransformation die 3 Fehlerstellen durch das Syndrom lokalisiert,
-jetzt gilt es nur noch diese zu korrigieren und wir haben unser originales Signal wieder.
-
+ \item Das Signal hat 64 die Daten $k$, hier zufällige Zahlen, welche übertragen werden sollen.
+ Zusätzlich soll nach 16 Fehler $t$, die rekonstruierbar sind abgesichert werden.
+ Das macht dann insgesamt $k + 2t =
+ 64 +2 \cdot 16= 96$ Übertragungszahlen.
+ (siehe Abschnitt \externaldocument{papers/reedsolomon/idee}\ref{reedsolomon:section:Fehlerkorrekturstellen})
+ Die 32 Fehlerkorrekturstellen werden als Nullzahlen Übertragen.
+ \item Nun werden mittels der diskreten Fourietransformation diese 96 codiert, transformiert.
+ Das heisst alle Informationen ist in alle Zahlenvorhanden, auch die Fehlerkorrekturstellen Nullzahlen.
+ \item Nun kommen drei Fehler dazu an den Übertragungsstellen 7, 21 und 75.
+ Die Fehler können auf den ganzen 96 Übertragungswerten liegen, wie die 75 zeigt.
+Zu Beachten ist auch noch, dass der Fehler um das 20- bis 150-Fache kleiner ist.Die Fehlerskala ist rechts.
+ \item Dieses wird nun Empfangen, man kann keine Fehler erkennen, da diese soviel kleiner sind.
+ Für das Decodieren wird die Inverse Fourietransformation angewendet, und alle Fehler werden mittransformiert.
+ \item Nun sieht man die Fehler im decodierten Signal in den Übertragungszahlen.
+ Von den Übertragungsstellen 64 bis 96 erkennt man, das diese nicht mehr Null sind.
+ \item Diese Fehlerkorrekturstellen 64 bis 96, dies definieren wir als Syndrom.
+ In diesem Syndrom ist die Fehlerinformation gespeichert und muss nur noch transformiert werden.
+ \item Hier sieht man genau wo die Fehler stattgefunden haben.
+ Leider nicht mehr mit der Qualtiätt der Ursprünglichen Fehler, sie sind nur noch 0.6 oder 0.4 gross.
+ Obwohl der Fehler um das 20Fache kleiner ist erkennt man im Locator die Fehlerstellen wieder.
+ \end{enumerate}
+ Nun haben wir mit Hilfe der Fourietransformation die 3 Fehlerstellen durch das Syndrom lokalisiert,
+ jetzt gilt es nur noch diese zu korrigieren und wir haben unser originales Signal wieder.
\begin{figure}
\centering
- \resizebox{\textwidth}{!}{
+ \resizebox{1.1\textwidth}{!}{
\includegraphics[width=\textwidth]{papers/reedsolomon/figures/plotfft}
- %\input{papers/reedsolomon/images/plotfft.tex}
+ %\input{papers/reedsolomon/tikz/plotfftraw.tex}
}
\caption{Übertragungsabfolge \ref{reedsolomon:subsection:Übertragungsabfolge}}
\label{fig:sendorder}
-\end{figure} \ No newline at end of file
+\end{figure}
+
+Nun zur Definition der Diskrete Fourietransformation, diese ist definiert als
+ \begin{equation}
+ \hat{c}_{k}
+ = \frac{1}{N} \sum_{n=0}^{N-1}
+ {f}_n \cdot e^{-\frac{2\pi j}{N} \cdot kn}.
+ ,\label{reedsolomon:DFT}
+ \end{equation}
+ Wenn man nun
+ \begin{equation}
+ w =
+ e^{-\frac{2\pi j}{N} k}
+ \label{reedsolomon:DFT_summand}
+ \end{equation}
+ ersetzte, und $N$ konstantbleibt, erhält man
+ \begin{equation}
+ \hat{c}_{k}=
+ \frac{1}{N}( {f}_0 w^0 + {f}_1 w^1 + {f}_2 w^2 + \dots + {f}_{N-1} w^N)
+ \label{reedsolomon:DFT_polynom}
+ \end{equation}
+ was überaust ähnlich zu unserem Polynomidee ist.
+Die Polynominterpolation und die Fourietransformation rechnen beide mit reelen Zahlen.
+Wenn die Fehlerabweichung sehr sehr klein ist, erkennt man diese irgendwann nicht mehr.
+Zusätzlich muss mann immer Grenzen bestimmen auf wieviel Stellen gerechnet wird und wie die Fehler erkannt werden im Locator.
+Deshalb haben Mathematiker einen neuen Körper gesucht und ihn in der Endlichkeit gefunden,
+dies wird nun im nächsten Abschnitt genauer erklärt.
+