aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/reedsolomon/dtf.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/reedsolomon/dtf.tex')
-rw-r--r--buch/papers/reedsolomon/dtf.tex85
1 files changed, 85 insertions, 0 deletions
diff --git a/buch/papers/reedsolomon/dtf.tex b/buch/papers/reedsolomon/dtf.tex
new file mode 100644
index 0000000..4552bed
--- /dev/null
+++ b/buch/papers/reedsolomon/dtf.tex
@@ -0,0 +1,85 @@
+%
+% dtf.tex -- Idee mit DFT
+%
+\section{Übertragung mit Hilfe der Diskrten Fourientransformation
+\label{reedsolomon:section:dtf}}
+\rhead{Umwandlung mit DTF}
+Um die Polynominterpolation zu umgehen, gehen wir nun über in die Fourietransformation.
+Dies wird weder eine Erklärung der Forientransorfmation, noch ein genauer gebrauch für den Reed-Solomon-Code.
+Dieser Abschnitt zeigt nur wie die Fourietransformation auf Fehler reagiert.
+Das ganze zeigen wir mit einem Beispiel einer Übertragung von Zahlen mit Hilfe der Fourietransformation.
+
+\subsection{Diskrete Fourietransformation Zusamenhang
+\label{reedsolomon:subsection:dtfzusamenhang}}
+Mit hilfe der Fourietransformation werden die \textcolor{blue}{blauen Datenpunkte} transformiert,
+zu den \textcolor{darkgreen}{grünen Übertragungspunkten}.
+Durch eine Rücktransformation könnnen die \textcolor{blue}{blauen Datenpunkte} wieder rekonstruiert werden.
+
+\subsubsection{Beispiel einer Übertragung
+\label{reedsolomon:subsection:Übertragungsabfolge}}
+Der Auftrag ist nun 64 Daten zu übertragen und nach 32 Fehler abzusicheren,
+16 Fehler erkennen und rekonstruieren.
+
+Dieser Auftrag soll mittels Fouriertransformation bewerkstelligt werden.
+In der Abbildung \ref{reedsolomon:subsection:Übertragungsabfolge} sieht man dies Schritt für Schritt,
+und hier werden die einzelne Schritte erklärt:
+\begin{enumerate}[(1)]
+ \item Das Signal hat 64 die Daten $k$, hier zufällige Zahlen, welche übertragen werden sollen.
+ Zusätzlich soll nach 16 Fehler $t$, die rekonstruierbar sind abgesichert werden.
+ Das macht dann insgesamt $k + 2t =
+ 64 +2 \cdot 16= 96$ Übertragungszahlen.
+ (siehe Abschnitt \externaldocument{papers/reedsolomon/idee}\ref{reedsolomon:section:Fehlerkorrekturstellen})
+ Die 32 Fehlerkorrekturstellen werden als Nullzahlen Übertragen.
+ \item Nun werden mittels der diskreten Fourietransformation diese 96 codiert, transformiert.
+ Das heisst alle Informationen ist in alle Zahlenvorhanden, auch die Fehlerkorrekturstellen Nullzahlen.
+ \item Nun kommen drei Fehler dazu an den Übertragungsstellen 7, 21 und 75.
+ Die Fehler können auf den ganzen 96 Übertragungswerten liegen, wie die 75 zeigt.
+Zu Beachten ist auch noch, dass der Fehler um das 20- bis 150-Fache kleiner ist.Die Fehlerskala ist rechts.
+ \item Dieses wird nun Empfangen, man kann keine Fehler erkennen, da diese soviel kleiner sind.
+ Für das Decodieren wird die Inverse Fourietransformation angewendet, und alle Fehler werden mittransformiert.
+ \item Nun sieht man die Fehler im decodierten Signal in den Übertragungszahlen.
+ Von den Übertragungsstellen 64 bis 96 erkennt man, das diese nicht mehr Null sind.
+ \item Diese Fehlerkorrekturstellen 64 bis 96, dies definieren wir als Syndrom.
+ In diesem Syndrom ist die Fehlerinformation gespeichert und muss nur noch transformiert werden.
+ \item Hier sieht man genau wo die Fehler stattgefunden haben.
+ Leider nicht mehr mit der Qualtiätt der Ursprünglichen Fehler, sie sind nur noch 0.6 oder 0.4 gross.
+ Obwohl der Fehler um das 20Fache kleiner ist erkennt man im Locator die Fehlerstellen wieder.
+ \end{enumerate}
+ Nun haben wir mit Hilfe der Fourietransformation die 3 Fehlerstellen durch das Syndrom lokalisiert,
+ jetzt gilt es nur noch diese zu korrigieren und wir haben unser originales Signal wieder.
+\begin{figure}
+ \centering
+ \resizebox{1.1\textwidth}{!}{
+ \includegraphics[width=\textwidth]{papers/reedsolomon/figures/plotfft}
+ %\input{papers/reedsolomon/tikz/plotfftraw.tex}
+ }
+ \caption{Übertragungsabfolge \ref{reedsolomon:subsection:Übertragungsabfolge}}
+ \label{fig:sendorder}
+\end{figure}
+
+Nun zur Definition der Diskrete Fourietransformation, diese ist definiert als
+ \begin{equation}
+ \hat{c}_{k}
+ = \frac{1}{N} \sum_{n=0}^{N-1}
+ {f}_n \cdot e^{-\frac{2\pi j}{N} \cdot kn}.
+ ,\label{reedsolomon:DFT}
+ \end{equation}
+ Wenn man nun
+ \begin{equation}
+ w =
+ e^{-\frac{2\pi j}{N} k}
+ \label{reedsolomon:DFT_summand}
+ \end{equation}
+ ersetzte, und $N$ konstantbleibt, erhält man
+ \begin{equation}
+ \hat{c}_{k}=
+ \frac{1}{N}( {f}_0 w^0 + {f}_1 w^1 + {f}_2 w^2 + \dots + {f}_{N-1} w^N)
+ \label{reedsolomon:DFT_polynom}
+ \end{equation}
+ was überaust ähnlich zu unserem Polynomidee ist.
+Die Polynominterpolation und die Fourietransformation rechnen beide mit reelen Zahlen.
+Wenn die Fehlerabweichung sehr sehr klein ist, erkennt man diese irgendwann nicht mehr.
+Zusätzlich muss mann immer Grenzen bestimmen auf wieviel Stellen gerechnet wird und wie die Fehler erkannt werden im Locator.
+Deshalb haben Mathematiker einen neuen Körper gesucht und ihn in der Endlichkeit gefunden,
+dies wird nun im nächsten Abschnitt genauer erklärt.
+