diff options
Diffstat (limited to '')
-rw-r--r-- | buch/papers/reedsolomon/dtf.tex | 48 | ||||
-rw-r--r-- | buch/papers/reedsolomon/idee.tex | 66 |
2 files changed, 56 insertions, 58 deletions
diff --git a/buch/papers/reedsolomon/dtf.tex b/buch/papers/reedsolomon/dtf.tex index 00281fb..025be3a 100644 --- a/buch/papers/reedsolomon/dtf.tex +++ b/buch/papers/reedsolomon/dtf.tex @@ -6,35 +6,25 @@ \section{Diskrete Fourien Transformation \label{reedsolomon:section:dtf}} \rhead{Umwandlung mit DTF} -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit -aspernatur aut odit aut fugit, sed quia consequuntur magni dolores -eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam -est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci -velit, sed quia non numquam eius modi tempora incidunt ut labore -et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima -veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, -nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure -reprehenderit qui in ea voluptate velit esse quam nihil molestiae -consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla -pariatur? +Um die Polynominterpolation zu umgehen, gehen wir nun über in die Fourientransformation. +Dies wird weder eine erklärung der Forientransorfmation noch ein genauer gebrauch +für den Reed-Solomon-Code. Dieser Abschnitt zeigt nur wie die Fourientransformation auf Fehler reagiert. +wobei sie dann bei späteren Berchnungen ganz nütlich ist. -\subsection{De finibus bonorum et malorum -\label{reedsolomon:subsection:malorum}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis -est et expedita distinctio. Nam libero tempore, cum soluta nobis -est eligendi optio cumque nihil impedit quo minus id quod maxime -placeat facere possimus, omnis voluptas assumenda est, omnis dolor -repellendus. Temporibus autem quibusdam et aut officiis debitis aut -rerum necessitatibus saepe eveniet ut et voluptates repudiandae -sint et molestiae non recusandae. Itaque earum rerum hic tenetur a -sapiente delectus, ut aut reiciendis voluptatibus maiores alias -consequatur aut perferendis doloribus asperiores repellat. +\subsection{Übertragungsabfolge +\label{reedsolomon:subsection:Übertragungsabfolge}} +Das Signal.... sind die Daten, Zahlen welche übertragen werden sollen. +Das speziell ist das wir 100 Punkte übertragen und von 64 bis 100, +werden nur Null Punkte übertragen, dies weiss auch unser Empfänger. +Nun wird das Signal in Abbildung... codiert... +Somit wird die Information jedes Punktes auf das ganze spektrum von 0 bis 100 übertragen. +Kommen nuun drei Fehler... hinzu zu diesem codierten Signal sind diese nicht zu erkennen. +Nach dem Empfangen... und decodieren ... erkennt man die fehlerhafte information in den Punkten 64 bis 100. +Filtert man nur diese Punkte heraus und Transformiert sie mit Fourier erhält man die stellen an denen die Fehler sich eingeschlichen haben. + +\subsection{Diskrete Fourientransformation Zusamenhang +\label{reedsolomon:subsection:dtfzusamenhang}} +Die Diskrete Fourientransformation ist definiert als +.... diff --git a/buch/papers/reedsolomon/idee.tex b/buch/papers/reedsolomon/idee.tex index 7200425..4a7716a 100644 --- a/buch/papers/reedsolomon/idee.tex +++ b/buch/papers/reedsolomon/idee.tex @@ -11,40 +11,48 @@ zu Übertragen und Fehler zu erkennen. Beim Reed-Solomon-Code kann man nicht nur Fehler erkenen, man kann sogar einige Fehler korrigieren. -\rhead{Idee} -Eine Idee ist mit den Daten, wir nehmen hier die Zahlen .... -ein Polynom +\rhead{Polynom-Ansatz} +Eine Idee ist die Daten, +ein Polynom zu bilden und dieses dann mit bestimmten Punkten überträgt. +Nehmen wir als beisbiel die Zahlen \textcolor{blue}{2}, \textcolor{blue}{1}, \textcolor{blue}{5}, +welche uns dann das Polynom \begin{equation} -\int_a^b x^2\, dx +p(x) = -\left[ \frac1312 x^3 \right]_a^b -= -\frac{b^3-a^3}3. +2x^2 + 1x + 5 \label{reedsolomon:equation1} \end{equation} -zu bilden wie in der abbildung ... dargestellt. - -abbildung +ergeben. +Übertragen werden nun die stellen 1, 2, 3\dots 7 dieses Polynomes. +Grafisch sieht man dies dann im Abbild //TODO +Wenn ein Fehler sich in die Übertragung eingeschlichen hatt, muss der Leser/Empfänger erkennen, welches das Richtige Polynom ist. +Der Leser/Empfänger weiss, mit welchem Grad das Polynom entwickelt wurde. +\subsection{Beispiel} +Für das Beispeil aus der Gleichung \ref{reedsolomon:equation1}, +ist ein Polynome zweiten Grades durch drei Punkte eindeutig bestimmbar. +Hat es Fehler in der Übertragunge gegeben, kann man diese erkennen, +da alle Punkte, die korrekt sind, auf dem Polynom liegen müssen. +Ab wie vielen Fehler ist das Polynom nicht mehr erkennbar beim Übertragen von 7 Punkten? +Bei 2 Fehlern kann man noch eindeutig bestimmen, dass das Polynom mit 4 Punkten, +gegenüber dem mit 5 Punkten falsch liegt. +Werden es mehr Fehler kann nur erkennt werden das das Polynom nicht stimmt. +Das Orginale Polynom kann aber nicht mehr gefunden werden. +Dabei sollten mehr Übertragungspunkte gegeben werden. -\subsection{De finibus bonorum et malorum -\label{reedsolomon:subsection:finibus}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga \eqref{000tempmlate:equation1}. +\section{Fehlerbestimmung +\label{reedsolomon:section:Fehlerbestimmmung}} +So wird ein Muster indentifiziert, welches genau vorherbestimmen kann, +wie gross das Polynom sein muss und wie viele Übertragungspunkte gegeben werden müssen. +Durch ein klein wenig Überlegung ist klar das die anzahl Zahlen (Daten, ab hier verwenden wir das Wort Nutzlast), +die dan Entschlüsselt werden sollen den Grad des Polynoms minus 1 ergeben. +Für die Anzahl an Übertragungspunkte, muss bestimmt werden wieviel Fehler erkennt und korrigiert werden sollen. +Mit Hilfe der Tabelle.... sieht man das es bei $$t$$ Fehlern und $$k$$ Nutzlast, +für das Übertragen $$k+2t$$ Punkte gegben werden müssen. -Et harum quidem rerum facilis est et expedita distinctio -\ref{reedsolomon:section:loesung}. -Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil -impedit quo minus id quod maxime placeat facere possimus, omnis -voluptas assumenda est, omnis dolor repellendus -\ref{reedsolomon:section:folgerung}. -Temporibus autem quibusdam et aut officiis debitis aut rerum -necessitatibus saepe eveniet ut et voluptates repudiandae sint et -molestiae non recusandae. -Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis -voluptatibus maiores alias consequatur aut perferendis doloribus -asperiores repellat. +Ein toller Nebeneffekt ist das dadurch auch $$2t$$ Fehler erkannt werden. +um zurück auf unser Beispiel zu kommen, +können von den 7 Übertragungspunkten bis zu $$2t = 2*2 = 4 $$ Punkten falsch liegen +und es wird kein eindeutiges Polynom 2ten Grades erkannt, und somit die Nutzlast Daten als fehlerhaft deklariert. +Ein Polynom durch Punkt mit Polynom Interpolation zu rekonstruieren ist schwierig und Fehleranfällig. |