aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/spannung/Einleitung.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/spannung/Einleitung.tex')
-rw-r--r--buch/papers/spannung/Einleitung.tex96
1 files changed, 43 insertions, 53 deletions
diff --git a/buch/papers/spannung/Einleitung.tex b/buch/papers/spannung/Einleitung.tex
index cf6e916..8e0d36d 100644
--- a/buch/papers/spannung/Einleitung.tex
+++ b/buch/papers/spannung/Einleitung.tex
@@ -1,15 +1,19 @@
\section{Einleitung\label{spannung:section:Einleitung}}
-In diesem Kapitel geht es darum das Hook'sche Gesetz im Dreidimensionalen zu beschreiben.
-Dieses beschreibt die Beziehung von Spannung und Dehnung von linear elastischen Materialien im Eindimensionalen.
+\rhead{Einleitung}
+Das Hook'sche Gesetz beschreibt die Beziehung von Spannung und Dehnung von linear-elastischen Materialien im Eindimensionalen.
+In diesem Kapitel geht es darum, das Hook'sche Gesetz im Dreidimensionalen zu beschreiben.
Durch variable Krafteinwirkungen entstehen in jedem Punkt des Materials eine Vielzahl an unterschiedlichen Spannungen.
-Jeder erdenkliche Punkt im Dreidimensionalen beschreibt daher einen entsprechenden individuellen Spannungszustand.
+In jedem erdenklichen Punkt im Dreidimensionalen herrscht daher ein entsprechender individueller Spannungszustand.
Um das Hook'sche Gesetz für den 3D Spannungszustand formulieren zu können, reichen Skalare nicht aus.
-Darum werden Vektoren, Matrizen und Tensoren zur Hilfe gezogen.
-Diese allgemeine Spannungsformel ist Grundlage für Computerprogramme und geotechnische Versuche, wie der Oedometer-Versuch.
+Darum werden Vektoren, Matrizen und Tensoren zu Hilfe gezogen.
+Mit diesen lässt sich eine Spannungsformel für den 3D Spannungszustand bilden.
+Diese Spannungsformel ist Grundlage für Computerprogramme und geotechnische Versuche, wie der Oedometer-Versuch.
-Um die mathematische Untersuchung vorzunehmen, beschäftigt man sich zuerst mit den spezifischen Gegebenheiten und Voraussetzungen.
-Ebenfalls gilt es ein paar wichtige Begriffe und deren mathematischen Zeichen einzuführen,
-damit sich den Berechnungen schlüssig folgen lässt.
+Um die mathematischen und physikalischen Berechnungen anwenden zu können,
+müssen vorerst ein paar spezifische Bedingungen vorausgesetzt und Annahmen getroffen werden.
+Ebenfalls gilt es, ein paar wichtige Begriffe und deren mathematischen Zeichen einzuführen.
+In diesem Kapitel gehen wir auch auf die Zusammenhänge von Spannungen, Dehnungen und Verformungen an elastischen Materialien ein,
+wie sie in gängigen Lehrbüchern der Mechanik oder der Geotechnik behandelt werden, z.~B.~\cite{spannung:Grundlagen-der-Geotechnik}.
\section{Spannungsausbreitung\label{spannung:section:Spannungsausbreitung}}
\rhead{Spannungsausbreitung}
@@ -21,30 +25,34 @@ Belastet man den Boden mit einer Spannung
\sigma
=
\frac{F}{A}
+,
\]
-, so wird diese in den Boden geleitet und von diesem kompensiert.
-Im Boden entstehen unterschiedlich hohe Zusatzspannung.
-Die Zusatzspannung scheint sich räumlich und berechenbar im Boden auszubreiten.
-Im Falle einer konstanten Flächenlast $\sigma$ (siehe Abbildung 1.1) breitet sich die Zusatzspannung zwiebelartig aus.
-Mit der Tiefe $t$ nimmt diese permanent ab (siehe Abbildung 1.2).
-Wie diese Geometrie der Ausbreitung ist wird durch viele Modelle und Ansätze näherungsweise beschrieben.
-Diese Zusatzspannung $\sigma$ ist aber sicher abhängig von $(x,y,t)$.
+so wird diese in den Boden geleitet und von diesem kompensiert.
+Im Boden entstehen unterschiedlich hohe Zusatzspannungen.
+Diese Zusatzspannung breitet sich räumlich im Boden aus.
+Im Falle einer konstanten Flächenlast $\sigma$ siehe Abbildung~\ref{fig:Bild4} breitet sich die Zusatzspannung zwiebelartig aus.
\begin{figure}
\centering
- \includegraphics[width=0.5\linewidth,keepaspectratio]{papers/spannung/Grafiken/Bild4.png}
- \caption{Ausbreitung der Zusatzspannung im Boden}
+ \includegraphics[width=0.4\linewidth,keepaspectratio]{papers/spannung/Grafiken/Bild4.png}
+ \caption{Ausbreitung der Zusatzspannung im Boden infolge einfacher Flächenlast}
\label{fig:Bild4}
\end{figure}
+Mit der Tiefe $t$ nimmt diese permanent ab (siehe Abbildung~\ref{fig:Bild5}).
+Wie diese Geometrie der Ausbreitung aussieht, kann durch viele Modelle und Ansätze näherungsweise beschrieben werden.
+Diese Zusatzspannung $\sigma$ ist im Wesentlichen abhängig von $(x,y,t)$.
+Je nach Modell werden noch andere Parameter berücksichtigt.
+Das können beispielsweise verschiedene Bodenkennwerte oder auch der Wassergehalt sein.
+
\begin{figure}
\centering
- \includegraphics[width=0.5\linewidth,keepaspectratio]{papers/spannung/Grafiken/Bild5.png}
- \caption{Funktionen Spannung und Dehnung}
+ \includegraphics[width=0.35\linewidth,keepaspectratio]{papers/spannung/Grafiken/Bild5.png}
+ \caption{Funktionen der Spannung und Dehnung im Zusammenhang mit der Tiefe}
\label{fig:Bild5}
\end{figure}
-Bei jeder dieser Zusatzspannung geht eine entsprechende Zusatzdehnung einher, welche eine Setzung bedeutet.
+Bei jeder dieser Zusatzspannung geht eine entsprechende Zusatzdehnung des Bodens einher, welche eine Setzung bedeutet.
Im einfachsten Fall kann modellhaft mit
\[
\varepsilon
@@ -58,43 +66,25 @@ s
\int_{0}^{\infty}\varepsilon\enspace dt
\]
berechnet werden mit:
-\[
-\varepsilon
-=
-\text{Dehnung [$-$]}
-\]
-\[
-\sigma
-=
-\text{Spannung [\si{\kilo\pascal}]}
-\]
-\[
-E
-=
-\text{Elastizitätsmodul; Young-Modul [\si{\kilo\pascal}]}
-\]
-\[
-t
-=
-\text{Tiefe [\si{\meter}]}
-\]
-\[
-s
-=
-\text{Setzung, Absenkung [m]}
-\]
-
+\begin{align*}
+ \varepsilon &= \text{Dehnung [$-$]} \\
+ \sigma &= \text{Spannung [\si{\kilo\pascal}]} \\
+ E &= \text{Elastizitätsmodul; Young-Modul [\si{\kilo\pascal}]}\\
+ t &= \text{Tiefe [\si{\meter}]} \\
+ s &= \text{Setzung, Absenkung [m].}
+\end{align*}
+Diese Zusammenhänge sind wie erwähnt unter anderem im Lehrbuch \cite{spannung:Grundlagen-der-Geotechnik} beschrieben.
In der praktischen Geotechnik wird man allerdings weitaus schwierigere Situationen antreffen.
-Ein Beispiel wäre eine Baugrube mit einem Baugrubenabschluss, wo ein Teil des Bodens abgetragen ist (siehe Abbildung 1.3).
+Ein Beispiel wäre eine Baugrube mit einem Baugrubenabschluss, wo ein Teil des Bodens abgetragen ist (siehe Abbildung~\ref{fig:Bild3}).
Die Ausbreitung der Zusatzspannung $\sigma(x,y,t)$ würde hier deutlich komplizierter ausfallen.
Dies bedeutet auch eine komplexere Setzung der Bodenoberfläche infolge einer Flächenlast $\sigma$.
-Aus allen zusätzlichen Spannungen müssen die adäquaten Dehnung mit Hilfe einer Spannungsgleichung berechnet werden.
-Diese beruht auf Annahmen nach Hooke auf einem linear elastischen Boden.
-Generell wird im Ingenieurwesen versucht Phänomene möglichst nach dem Hook'schen Gesetz abbilden zu können.
+Aus allen zusätzlichen Spannungen müssen die adäquaten Dehnungen mit Hilfe einer Spannungsgleichung berechnet werden.
+Diese beruht auf Annahmen nach Hooke auf einem linear-elastischen Boden.
+Generell wird im Bauingenieurwesen oder auch im Maschinenbau versucht, manche Phänomene möglichst nach dem Hook'schen Gesetz abbilden zu können.
\begin{figure}
\centering
- \includegraphics[width=0.5\linewidth,keepaspectratio]{papers/spannung/Grafiken/Bild3.png}
- \caption{Beispiel Lastauftrag auf Boden}
+ \includegraphics[width=0.45\linewidth,keepaspectratio]{papers/spannung/Grafiken/Bild3.png}
+ \caption{Beispiel eines Lastauftrags auf den Boden bei einer komplexeren Situation, welche kompliziertere Spannungsausbreitung zur Folge hat}
\label{fig:Bild3}
-\end{figure} \ No newline at end of file
+\end{figure}