aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/spannung/teil2.tex
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--buch/papers/spannung/teil2.tex487
1 files changed, 449 insertions, 38 deletions
diff --git a/buch/papers/spannung/teil2.tex b/buch/papers/spannung/teil2.tex
index 37d3242..3db3e26 100644
--- a/buch/papers/spannung/teil2.tex
+++ b/buch/papers/spannung/teil2.tex
@@ -1,40 +1,451 @@
-%
-% teil2.tex -- Beispiel-File für teil2
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Teil 2
-\label{spannung:section:teil2}}
-\rhead{Teil 2}
-Sed ut perspiciatis unde omnis iste natus error sit voluptatem
-accusantium doloremque laudantium, totam rem aperiam, eaque ipsa
-quae ab illo inventore veritatis et quasi architecto beatae vitae
-dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit
-aspernatur aut odit aut fugit, sed quia consequuntur magni dolores
-eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam
-est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci
-velit, sed quia non numquam eius modi tempora incidunt ut labore
-et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima
-veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam,
-nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure
-reprehenderit qui in ea voluptate velit esse quam nihil molestiae
-consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla
-pariatur?
-
-\subsection{De finibus bonorum et malorum
-\label{spannung:subsection:bonorum}}
-At vero eos et accusamus et iusto odio dignissimos ducimus qui
-blanditiis praesentium voluptatum deleniti atque corrupti quos
-dolores et quas molestias excepturi sint occaecati cupiditate non
-provident, similique sunt in culpa qui officia deserunt mollitia
-animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis
-est et expedita distinctio. Nam libero tempore, cum soluta nobis
-est eligendi optio cumque nihil impedit quo minus id quod maxime
-placeat facere possimus, omnis voluptas assumenda est, omnis dolor
-repellendus. Temporibus autem quibusdam et aut officiis debitis aut
-rerum necessitatibus saepe eveniet ut et voluptates repudiandae
-sint et molestiae non recusandae. Itaque earum rerum hic tenetur a
-sapiente delectus, ut aut reiciendis voluptatibus maiores alias
-consequatur aut perferendis doloribus asperiores repellat.
+\section{Dreiachsiger Spannungszustand\label{spannung:section:Dreiachsiger_Spannungszustand}}
+\rhead{Proportionalität Spannung-Dehnung}
+Wie im Kapitel Spannungsausbreitung beschrieben herrscht in jedem Punkt ein anderer Spannungszustand.
+Um die Spannung im Boden genauer untersuchen zu können, führt man einen infinitesimales Bodenteilchen ein.
+Das Bodenteilchen ist geometrisch gesehen ein Würfel.
+An diesem Bodenteilchen trägt man die Spannungen ein in alle Richtungen.
+\begin{figure}
+ \centering
+ \includegraphics[width=0.5\linewidth,keepaspectratio]{papers/spannung/Grafiken/infinitesimalerWuerfel.png}
+ \caption{Infinitesimales Bodenteilchen}
+ \label{fig:infintesimaler-wurfel}
+\end{figure}
+
+An diesem infinitesimalen Bodenteilchen hat man ein räumliches Koordinatensystem, die Achsen $(1,2,3)$.
+Die Achsen vom Koordinatensystem zeigen aus den 3 ersichtlichen Flächen heraus.
+Pro ersichtliche Fläche haben wir eine Normalspannung und zwei Schubspannungen.
+Im Gegensatz zum eindimensionalen Zustand entstehen bei einer Belastung des Bodenteilchens eine Vielzahl an Spannungen.
+Es entstehen diverse Normal- und Schubspannungen.
+Die Schubspannungen befinden sich an der Fläche, sie gehen rechtwinklig von den Achsen weg.
+Die Schubspannungen auf einer Fläche stehen im 90 Grad Winkel zueinander.
+Geschrieben werden diese mit $\sigma$, mit jeweils zwei Indizes.
+Die Indizes geben uns an, in welche Richtung die Spannungen zeigen.
+Der erste Index ist die Fläche auf welcher man sich befindet.
+Der zweite Index gibt an, in welche Richtung die Spannung zeigt, dabei referenzieren die Indizes auch auf die Achsen $(1,2,3)$.
+Bei den Spannungen sind immer positive als auch negative Spannungen möglich.
+Es können also Druck- oder Zugspannungen sein.
+
+Zunächst wird untenstehend der allgemeine Spannungszustand betrachtet.
+
+Spannungstensor 2. Stufe i,j $\in$ {1,2,3}
+\[
+\overline{\sigma}
+=
+\sigma_{ij}
+=
+\begin{pmatrix}
+ \sigma_{11} & \sigma_{12} & \sigma_{13} \\
+ \sigma_{21} & \sigma_{22} & \sigma_{23} \\
+ \sigma_{31} & \sigma_{32} & \sigma_{33}
+\end{pmatrix}
+=
+\qquad
+\Rightarrow
+\qquad
+\vec{\sigma}
+=
+\begin{pmatrix}
+ \sigma_{11}\\
+ \sigma_{12}\\
+ \sigma_{13}\\
+ \sigma_{21}\\
+ \sigma_{22}\\
+ \sigma_{23}\\
+ \sigma_{31}\\
+ \sigma_{32}\\
+ \sigma_{33}
+\end{pmatrix}
+\]
+
+Dehnungstensor 2. Stufe k,l $\in$ {1,2,3}
+
+\[
+\overline{\varepsilon}
+=
+\varepsilon_{kl}
+=
+\begin{pmatrix}
+ \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\
+ \varepsilon_{21} & \varepsilon_{22} & \varepsilon_{23} \\
+ \varepsilon_{31} & \varepsilon_{32} & \varepsilon_{33}
+\end{pmatrix}
+=
+\qquad
+\Rightarrow
+\qquad
+\vec{\varepsilon}
+=
+\begin{pmatrix}
+ \varepsilon_{11} \\
+ \varepsilon_{12} \\
+ \varepsilon_{13} \\
+ \varepsilon_{21} \\
+ \varepsilon_{22} \\
+ \varepsilon_{23} \\
+ \varepsilon_{31} \\
+ \varepsilon_{32} \\
+ \varepsilon_{33}
+\end{pmatrix}
+\]
+
+Bei diesen zwei obenstehenden Formeln kann man sehen wie Matrizen zu einem Vektor umgewandelt wurden.
+Unter dem Kapitel Hadamard-Algebra kann man sehen, dass man dabei Zeile um Zeile in eine Spalte schreiben kann,
+sodass es einen Vektor ergibt.
+
+Elastizitätstensor 4. Stufe i,j,k,l $\in$ {1,2,3}
+\[
+\overline\overline{C}
+=
+C_{ijkl}
+=
+\begin{pmatrix}
+C_{1111} & C_{1112} & C_{1113} & C_{1121} & C_{1122} & C_{1123} & C_{1131} & C_{1132} & C_{1133} \\
+C_{1211} & C_{1212} & C_{1213} & C_{1221} & C_{1222} & C_{1223} & C_{1231} & C_{1232} & C_{1233} \\
+C_{1311} & C_{1312} & C_{1313} & C_{1321} & C_{1322} & C_{1323} & C_{1331} & C_{1332} & C_{1333} \\
+C_{2111} & C_{2112} & C_{2113} & C_{2121} & C_{2122} & C_{2123} & C_{2131} & C_{2132} & C_{2133} \\
+C_{2211} & C_{2212} & C_{1113} & C_{2221} & C_{2222} & C_{2223} & C_{2231} & C_{2232} & C_{2233} \\
+C_{2311} & C_{2312} & C_{2313} & C_{2321} & C_{2322} & C_{2323} & C_{2331} & C_{2332} & C_{2333} \\
+C_{3111} & C_{3112} & C_{3113} & C_{3121} & C_{3122} & C_{3123} & C_{3131} & C_{3132} & C_{3133} \\
+C_{3211} & C_{3212} & C_{3213} & C_{3221} & C_{3222} & C_{3223} & C_{3231} & C_{3232} & C_{3233} \\
+C_{3311} & C_{3312} & C_{3313} & C_{3321} & C_{3322} & C_{3323} & C_{3331} & C_{3332} & C_{3333}
+\end{pmatrix}
+\]
+
+Dieser Elastizitätstensor muss eine quadratische Matrix mit $3^{4}$ Einträgen ergeben,
+da die Basis mit den drei Richtungen $1, 2, 3$ und die Potenz mit den 4 Indizes mit je $1, 2, 3$ definiert sind.
+Dies gibt daher eine 9 x 9 Matrix, welche zudem symmetrisch ist.
+
+Folglich gilt:
+\[
+\overline{\overline{C}}
+=
+\overline{\overline{C}}~^{T}
+\]
+
+Allgemeine Spannungsgleichung (mit Vektoren und Tensor)
+\[
+\vec\sigma
+=
+\overline{\overline{C}}\cdot\vec{\varepsilon}
+\]
+
+\[
+\begin{pmatrix}
+ \sigma_{11}\\
+ \sigma_{12}\\
+ \sigma_{13}\\
+ \sigma_{21}\\
+ \sigma_{22}\\
+ \sigma_{23}\\
+ \sigma_{31}\\
+ \sigma_{32}\\
+ \sigma_{33}
+\end{pmatrix}
+=
+\frac{E}{(1+\nu)(1-2\nu)}
+\begin{pmatrix}
+ 1-2\nu & 0 & 0 & 0 & \nu & 0 & 0 & 0 & \nu \\
+ 0 & frac{1}{4} & 0 & frac{1}{4} & 0 & 0 & 0 & 0 & 0 \\
+ 0 & 0 & frac{1}{4} & 0 & 0 & 0 & frac{1}{4} & 0 & 0 \\
+ 0 & frac{1}{4} & 0 & frac{1}{4} & 0 & 0 & 0 & 0 & 0 \\
+ \nu & 0 & 0 & 0 & 1-2\nu & 0 & 0 & 0 & \nu \\
+ 0 & 0 & 0 & 0 & 0 & frac{1}{4} & 0 & frac{1}{4} & 0 \\
+ 0 & 0 & frac{1}{4} & 0 & 0 & 0 & frac{1}{4} & 0 & 0 \\
+ 0 & 0 & 0 & 0 & 0 & frac{1}{4} & 0 & frac{1}{4} & 0 \\
+ \nu & 0 & 0 & 0 & \nu & 0 & 0 & 0 & 1-2\nu
+\end{pmatrix}
+\begin{pmatrix}
+ \varepsilon_{11} \\
+ \varepsilon_{12} \\
+ \varepsilon_{13} \\
+ \varepsilon_{21} \\
+ \varepsilon_{22} \\
+ \varepsilon_{23} \\
+ \varepsilon_{31} \\
+ \varepsilon_{32} \\
+ \varepsilon_{33}
+\end{pmatrix}
+\]
+
+Man kann das zudem auch als Indexnotation aufschreiben.
+
+\[
+\sigma_{ij}
+=
+=
+\sum_k=1^3
+\sum_l=1^3
+C_{ijkl}\cdot\varepsilon_{kl}
+\]
+
+Um die Berechnung an einem Beispiel zu veranschaulichen:
+
+\[
+\sigma_{22}
+=
+\frac{E\cdot\nu}{(1+\nu)(1-2\nu)}\cdot\varepsilon_{11}+\frac{E}{(1+\nu)}\cdot\varepsilon_{22}+\frac{E\cdot\nu}{(1+\nu)(1-2\nu)}\cdot\varepsilon_{33}
+\]
+
+Anhand dem Tensor der allgemeinen Spannungsgleichung kann man zwar eine Symmetrie erkennen.
+Die verschiedenen Einträge wechseln sich aber mit einander ab und es gibt keine klaren Blöcke mit nur einem gleichen Eintrag.
+Man greift deshalb auf die Voigt'sche Notation zurück.
+
+
+Zur Notation wird die Voigt'sche Notation benutzt. Das sieht wie folgt aus:
+
+\[
+\overline{\sigma}
+=
+\begin{pmatrix}
+ \sigma_{11} & \sigma_{12} & \sigma_{13} \\
+ \sigma_{21} & \sigma_{22} & \sigma_{23} \\
+ \sigma_{31} & \sigma_{32} & \sigma_{33}
+\end{pmatrix}
+=
+\begin{pmatrix}
+ \sigma_{11} & \sigma_{12} & \sigma_{13} \\
+ & \sigma_{22} & \sigma_{23} \\
+ sym & & \sigma_{33}
+\end{pmatrix}
+\Rightarrow
+\vec{\sigma}
+=
+\begin{pmatrix}
+ \sigma_{11}\\
+ \sigma_{22}\\
+ \sigma_{33}\\
+ \sigma_{23}\\
+ \sigma_{13}\\
+ \sigma_{12}
+\end{pmatrix}
+\]
+
+In der Voigt'sche Notation hat man die Reihenfolge von der Ecke links oben, diagonal zur Ecke rechts unten.
+Danach ist noch $\sigma_{23}$, $\sigma_{13}$ und $\sigma_{12}$ aufzuschreiben um den Vektor zu erhalten.
+
+Eine weitere Besonderheit ist die Symmetrie der Matrix.
+So entspricht $\sigma_{23}$ dem Wert $\sigma_{32}$ und $\sigma_{13}$ dem Wert $\sigma_{31}$.
+Dies ist dadurch bedingt, dass die Kräfte in seitlicher Richtung im Boden die gleichen Werte annehmen.
+Man hat in dieser Berechnung ein isotropes Material.
+Im infinitesimalen Körper muss ein Gleichgewicht vorherrschen.
+Ist kein Gleichgewicht vorhanden, würde sich der Körper zu drehen beginnen.
+Es macht somit keinen Unterschied, ob man auf der Achse 2 in Richtung 3 geht,
+oder auf der Achse 3 in Richtung 2.
+
+Da die Spannung proportional zur Dehnung ist, kann man die ganze Voigt'sche Notation auch mit der Dehnung ausdrücken.
+Auch hier wandelt man das ganze gemäss der Reihenfolge in einen Vektor um.
+
+\[
+\overline{\varepsilon}
+=
+\begin{pmatrix}
+ \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\
+ \varepsilon_{21} & \varepsilon_{22} & \varepsilon_{23} \\
+ \varepsilon_{31} & \varepsilon_{32} & \varepsilon_{33}
+\end{pmatrix}
+=
+\begin{pmatrix}
+ \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\
+ & \varepsilon_{22} & \varepsilon_{23} \\
+ \text{sym} & & \varepsilon_{33}
+\end{pmatrix}
+\qquad
+\Rightarrow
+\qquad
+\vec{\varepsilon}
+=
+\begin{pmatrix}
+ \varepsilon_{11} \\
+ \varepsilon_{22} \\
+ \varepsilon_{33} \\
+ \varepsilon_{23} \\
+ \varepsilon_{13} \\
+ \varepsilon_{12}
+\end{pmatrix}
+\]
+
+
+Mit der hergeleiteten Beziehung für die Spannungsgleichung anhand vom E-Modul,
+der allgemeinen linearen Spannungsgleichung kann man diese Beziehungen neu aufschreiben.
+Man benötigt dazu den zuvor berechneten Dehnungsvektor.
+Die Gleichung besagt:
+\[
+\text{Spannungsvektor}
+=
+\text{Elastizitätstensor}\cdot\text{Dehnungsvektor}
+\]
+\[
+\vec{\sigma}
+=
+\overline{\overline{C}}\cdot\vec{\varepsilon}
+\]
+
+Die Vektoren haben je 6 Einträge. Um das ganze auszudrücken braucht es einen 6 x 6 Elastizitätstensor.
+Der Tensor hat sich also im Vergleich zum 9 x 9 Tensor verkleinert.
+Dies ist deshalb der Fall, da man in den Achsen 2 und 3 Symmetrien hat.
+Dadurch kann man die Einträge $(\varepsilon_{21}=\varepsilon_{12}; \varepsilon_{31}=\varepsilon_{13}; \varepsilon_{32}=\varepsilon_{23})$
+zusammenfassen und drei Einträge verschwinden, da drei Dehnungen gleich sind.
+Das ganze sieht dann wie folgt aus:
+
+\[
+\begin{pmatrix}
+ \sigma_{11} \\
+ \sigma_{22} \\
+ \sigma_{33} \\
+ \sigma_{23} \\
+ \sigma_{13} \\
+ \sigma_{12}
+\end{pmatrix}
+=
+\begin{pmatrix}
+ C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\
+ C_{21} & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \\
+ C_{31} & C_{32} & C_{33} & C_{34} & C_{35} & C_{36} \\
+ C_{41} & C_{42} & C_{43} & C_{44} & C_{45} & C_{46} \\
+ C_{51} & C_{52} & C_{53} & C_{54} & C_{55} & C_{56} \\
+ C_{61} & C_{62} & C_{63} & C_{64} & C_{65} & C_{66}
+\end{pmatrix}
+\begin{pmatrix}
+ \varepsilon_{11} \\
+ \varepsilon_{22} \\
+ \varepsilon_{33} \\
+ \varepsilon_{23} \\
+ \varepsilon_{13} \\
+ \varepsilon_{12}
+\end{pmatrix}
+\]
+
+Die Spannung $\sigma_{11}$ besteht somit aus Anteilen von all diesen sechs Konstanten und den verschiedenen Dehnungen.
+Zuvor bei der Voigt'schen Notation hat man jedoch gesehen, dass die Tensoren symmetrisch sind.
+Folglich muss auch dieser Elastizitätstensor symmetrisch sein.
+Das sind folgendermassen aus:
+
+\[
+\begin{pmatrix}
+ \sigma_{11} \\
+ \sigma_{22} \\
+ \sigma_{33} \\
+ \sigma_{23} \\
+ \sigma_{13} \\
+ \sigma_{12}
+\end{pmatrix}
+=
+\begin{pmatrix}
+ C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\
+ & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \\
+ & & C_{33} & C_{34} & C_{35} & C_{36} \\
+ & & & C_{44} & C_{45} & C_{46} \\
+ & & & & C_{55} & C_{56} \\
+ \text{sym} & & & & & C_{66}
+\end{pmatrix}
+\begin{pmatrix}
+ \varepsilon_{11} \\
+ \varepsilon_{22} \\
+ \varepsilon_{33} \\
+ \varepsilon_{23} \\
+ \varepsilon_{13} \\
+ \varepsilon_{12}
+\end{pmatrix}
+\]
+
+Die Konstanten $C$ kann man nun anders ausdrücken.
+Und zwar bewerkstelligt man dies mithilfe vom Hook'schen Gesetz.
+
+\[
+\begin{pmatrix}
+ \sigma_{11}\\
+ \sigma_{22}\\
+ \sigma_{33}\\
+ \sigma_{23}\\
+ \sigma_{13}\\
+ \sigma_{12}
+\end{pmatrix}
+=
+\frac{E}{(1+\nu)(1-2\nu)}
+\begin{pmatrix}
+ 1- 2\nu & \nu & \nu & 0 & 0 & 0\\
+ \nu & 1- 2\nu & \nu & 0 & 0 & 0\\
+ \nu & \nu & 1- 2\nu & 0 & 0 & 0\\
+ 0 & 0 & 0 & \frac{1}{2} & 0 & 0\\
+ 0 & 0 & 0 & 0 & \frac{1}{2} & 0\\
+ 0 & 0 & 0 & 0 & 0 & \frac{1}{2}
+\end{pmatrix}
+\begin{pmatrix}
+ \varepsilon_{11}\\
+ \varepsilon_{22}\\
+ \varepsilon_{33}\\
+ \varepsilon_{23}\\
+ \varepsilon_{13}\\
+ \varepsilon_{12}
+\end{pmatrix}
+\]
+
+Mithilfe der Poissonzahl, welche uns die Querdehnung angibt,
+sprich wie viel sich der Körper in Querrichtung verformt und dem E-Modul kann man alle Konstanten ausdrücken.
+Bei einigen fällt auf, dass diese 0 werden. Der Tensor besagt also,
+dass diese jeweiligen Konstanten keinen Einfluss auf unsere Spannung haben.
+Man sieht nun auch ganz gut, dass sich im Vergleich bei der allgemeinen Darstellung der Spannungsgleichung,
+die Einträge verschoben haben. Man hat nun eine sehr vorteilhafte Anordnung der verschiedenen Blöcke im Tensor.
+Als Beispiel kann man sich $\sigma_{33}$ anschauen.
+Es ist ersichtlich, dass die Konstante $C_{31}$, $C_{32}$, $C_{33}$, $C_{35}$ und $C_{36}$ keinen Einfluss auf $\sigma_{33}$ haben.
+Dies kann wie folgt erklärt werden. Auf Achse 3 geht $\sigma_{33}$ in Richtung 3.
+Der Einfluss von $C_{31}$, Achse 3 in Richtung 1 hat keinen Einfluss auf $\sigma_{33}$.
+
+Von $\overline{\overline{C}}$ bildet man nun die Inverse Matrix $\overline{\overline{C}}~^{-1}$ stellt sich die ganze Gleichung um.
+
+\[
+\vec{\varepsilon}
+=
+\overline{\overline{C}}~^{-1}\cdot \vec{\sigma}
+\]
+
+\[
+\begin{pmatrix}
+ \varepsilon_{11}\\
+ \varepsilon_{22}\\
+ \varepsilon_{33}\\
+ \varepsilon_{23}\\
+ \varepsilon_{13}\\
+ \varepsilon_{12}
+\end{pmatrix}
+=
+\frac{1}{E}
+\begin{pmatrix}
+ 1 & -\nu & -\nu & 0 & 0 & 0 \\
+ -\nu & 1 & -\nu & 0 & 0 & 0 \\
+ -\nu & -\nu & 1 & 0 & 0 & 0 \\
+ 0 & 0 & 0 & 2+2\nu & 0 & 0 \\
+ 0 & 0 & 0 & 0 & 2+2\nu & 0 \\
+ 0 & 0 & 0 & 0 & 0 & 2+2\nu
+\end{pmatrix}
+\begin{pmatrix}
+ \sigma_{11}\\
+ \sigma_{22}\\
+ \sigma_{33}\\
+ \sigma_{23}\\
+ \sigma_{13}\\
+ \sigma_{12}
+\end{pmatrix}
+\]
+
+Die zwei Blöcke links unten und rechts oben sind immer noch vorhanden.
+Im Vergleich wo wir die Inverse noch nicht gemacht haben hat sich das nicht geändert.
+Um die Einflüsse der Parameter zu veranschaulichen schreibt man folgende Gleichung.
+
+\[
+\varepsilon_{22}
+=
+\frac{1}{E}\sigma_{22} - \frac{\nu}{E}\sigma_{11} - \frac{\nu}{E}\sigma_{33}
+\]
+
+$\varepsilon_{22}$ beschreibt die Dehnung in Achse 2 und in Richtung 2.
+In erster Linie hängt $\varepsilon_{22}$ von $\sigma_{22}$ ab.
+Wenn die Poisson - Zahl grösser wird oder $\sigma_{11}$ oder $\sigma_{33}$, dann wird dadurch die Dehnung $\varepsilon_{22}$ kleiner.
+Das heisst, auf Kosten von Verformung in anderer Richtung als Achse 2 Richtung 2 erfolgt die Verformung an anderer Stelle.
+Wiederum hat die Schubspannung auf $\sigma_{11}$ keinen Einfluss.
+
+Nun kennt man die Beziehung der 6 Dehnungen mit den 6 Spannungen.
+In der Geotechnik wäre das aufgrund der vielen Komponenten sehr umständlich um damit Berechnungen zu machen.
+Es braucht daher eine Vereinfachung mit Invarianten, welche im nächsten Kapitel beschrieben sind.