aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/spannung/teil2.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/spannung/teil2.tex')
-rw-r--r--buch/papers/spannung/teil2.tex527
1 files changed, 489 insertions, 38 deletions
diff --git a/buch/papers/spannung/teil2.tex b/buch/papers/spannung/teil2.tex
index 37d3242..921d2b8 100644
--- a/buch/papers/spannung/teil2.tex
+++ b/buch/papers/spannung/teil2.tex
@@ -1,40 +1,491 @@
-%
-% teil2.tex -- Beispiel-File für teil2
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Teil 2
-\label{spannung:section:teil2}}
-\rhead{Teil 2}
-Sed ut perspiciatis unde omnis iste natus error sit voluptatem
-accusantium doloremque laudantium, totam rem aperiam, eaque ipsa
-quae ab illo inventore veritatis et quasi architecto beatae vitae
-dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit
-aspernatur aut odit aut fugit, sed quia consequuntur magni dolores
-eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam
-est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci
-velit, sed quia non numquam eius modi tempora incidunt ut labore
-et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima
-veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam,
-nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure
-reprehenderit qui in ea voluptate velit esse quam nihil molestiae
-consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla
-pariatur?
-
-\subsection{De finibus bonorum et malorum
-\label{spannung:subsection:bonorum}}
-At vero eos et accusamus et iusto odio dignissimos ducimus qui
-blanditiis praesentium voluptatum deleniti atque corrupti quos
-dolores et quas molestias excepturi sint occaecati cupiditate non
-provident, similique sunt in culpa qui officia deserunt mollitia
-animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis
-est et expedita distinctio. Nam libero tempore, cum soluta nobis
-est eligendi optio cumque nihil impedit quo minus id quod maxime
-placeat facere possimus, omnis voluptas assumenda est, omnis dolor
-repellendus. Temporibus autem quibusdam et aut officiis debitis aut
-rerum necessitatibus saepe eveniet ut et voluptates repudiandae
-sint et molestiae non recusandae. Itaque earum rerum hic tenetur a
-sapiente delectus, ut aut reiciendis voluptatibus maiores alias
-consequatur aut perferendis doloribus asperiores repellat.
+\section{Dreiachsiger Spannungszustand\label{spannung:section:Dreiachsiger_Spannungszustand}}
+\rhead{Dreiachsiger Spannungszustand}
+Durch komplexe Spannungsausbreitungen im Boden entstehen im 3D Spannungszustand unterschiedliche Normal- und Schubspannungen.
+\begin{figure}
+ \centering
+ \includegraphics[width=0.4\linewidth,keepaspectratio]{papers/spannung/Grafiken/infinitesimalerWuerfel.png}
+ \caption{Beispiel eines Spannungszustandes; Vergrösserung eines infinitesimalen Bodenteilchen}
+ \label{fig:infinitesimalerWuerfel}
+\end{figure}
+Ein Tensor 0. Stufe, sprich ein Skalar, kann lediglich den 1D Spannungszustand beschreiben.
+Um den 3D Spannungszustandes als ein mathematisches Objekt darstellen zu können, wird ein Tensor 2. Stufe, sprich eine Matrix, eingesetzt.
+Die Spannungen sind durch die zwei Indizes
+\[
+i, j\in\left\{1, 2, 3\right\}
+\]
+definiert.
+Daher ergeben sich die neun Spannungen.
+Die nachfolgenden Zusammenhänge sind in \cite{spannung:Voigtsche-Notation} beschrieben.
+Dieser Spannungstensor kann schliesslich mit $3^2$ Einträgen als $3\times3$ Matrix mit
+\[
+\overline{\sigma}
+=
+\sigma_{ij}
+=
+\begin{pmatrix}
+ \sigma_{11} & \sigma_{12} & \sigma_{13} \\
+ \sigma_{21} & \sigma_{22} & \sigma_{23} \\
+ \sigma_{31} & \sigma_{32} & \sigma_{33}
+\end{pmatrix}
+\]
+dargestellt werden und beschreibt somit den gesamten Spannungszustand.
+Die Dehnungen wirken in die gleichen Richtungen wie die korrespondierenden Spannungen und sind durch die zwei Indizes
+\[
+k, l\in\left\{1, 2, 3\right\}
+\]
+definiert.
+Der Dehnungstensor ist ebenfalls ein Tensor 2. Stufe und kann somit auch als $3\times3$ Matrix mit
+\[
+\overline{\varepsilon}
+=
+\varepsilon_{kl}
+=
+\begin{pmatrix}
+ \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\
+ \varepsilon_{21} & \varepsilon_{22} & \varepsilon_{23} \\
+ \varepsilon_{31} & \varepsilon_{32} & \varepsilon_{33}
+\end{pmatrix}
+\]
+dargestellt werden und beschreibt den gesamten Dehnungszustand.
+Der Spannungs- und Dehnungstensor 2. Stufe kann je in einen Tensor 1. Stufe überführt werden, welches ein Spaltenvektor ist.
+Gemäss der Hadamard-Algebra dürfen Zeile um Zeile in eine Spalte notiert werden, sodass es einen Spaltenvektor ergibt.
+So ergibt sich der Spannungsvektor
+\[
+\overline{\sigma}
+=
+\sigma_{ij}
+=
+\begin{pmatrix}
+ \sigma_{11} & \sigma_{12} & \sigma_{13} \\
+ \sigma_{21} & \sigma_{22} & \sigma_{23} \\
+ \sigma_{31} & \sigma_{32} & \sigma_{33}
+\end{pmatrix}
+\qquad
+\Rightarrow
+\qquad
+\vec{\sigma}
+=
+\begin{pmatrix}
+ \sigma_{11}\\
+ \sigma_{12}\\
+ \sigma_{13}\\
+ \sigma_{21}\\
+ \sigma_{22}\\
+ \sigma_{23}\\
+ \sigma_{31}\\
+ \sigma_{32}\\
+ \sigma_{33}
+\end{pmatrix}
+\]
+und Dehnungsvektor
+\[
+\overline{\varepsilon}
+=
+\varepsilon_{kl}
+=
+\begin{pmatrix}
+ \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\
+ \varepsilon_{21} & \varepsilon_{22} & \varepsilon_{23} \\
+ \varepsilon_{31} & \varepsilon_{32} & \varepsilon_{33}
+\end{pmatrix}
+\qquad
+\Rightarrow
+\qquad
+\vec{\varepsilon}
+=
+\begin{pmatrix}
+ \varepsilon_{11} \\
+ \varepsilon_{12} \\
+ \varepsilon_{13} \\
+ \varepsilon_{21} \\
+ \varepsilon_{22} \\
+ \varepsilon_{23} \\
+ \varepsilon_{31} \\
+ \varepsilon_{32} \\
+ \varepsilon_{33}
+\end{pmatrix}
+.
+\]
+Um die Beziehung von Spannung und Dehnung, welche mit Tensoren 2. Stufe ausgedrückt werden, zu beschreiben, wird ein Elastizitätstensor 4. Stufe benötigt.
+Dieser ist im 1D Spannungszustand ein Tensor 0. Stufe und somit ein Skalar, der Elastizitätsmodul $E$.
+
+Dieser Elastizitätstensor 4. Stufe kann als Tensor 2. Stufe, sprich als Matrix, dargestellt werden.
+So wird die Spannungsgleichung stark vereinfacht, da nun eine Matrix auf einen Vektor operiert.
+Dieser Tensor muss für eine Spannung jeden Einfluss aus allen 9 Dehnungen mit Konstanten erfassen.
+Dies bedeutet um eine von 9 Spannungen berechnen zu können müssen alle 9 Dehnung mit unterschiedlichen Faktoren summiert werden.
+Es ergeben sich $9^2$ Einträge, welches mit den 4 Indizes
+\[
+i, j, k, l\in\left\{1, 2, 3\right\}
+,
+\]
+die zueinander verknüpft werden müssen, zu begründen ist.
+Es ergeben sich $3^4$ Einträge, sprich eine $9\times9$ Matrix, welche allgemein
+\[
+\overline{\overline{C}}
+=
+C_{ijkl}
+=
+\begin{pmatrix}
+C_{1111} & C_{1112} & C_{1113} & C_{1121} & C_{1122} & C_{1123} & C_{1131} & C_{1132} & C_{1133} \\
+C_{1211} & C_{1212} & C_{1213} & C_{1221} & C_{1222} & C_{1223} & C_{1231} & C_{1232} & C_{1233} \\
+C_{1311} & C_{1312} & C_{1313} & C_{1321} & C_{1322} & C_{1323} & C_{1331} & C_{1332} & C_{1333} \\
+C_{2111} & C_{2112} & C_{2113} & C_{2121} & C_{2122} & C_{2123} & C_{2131} & C_{2132} & C_{2133} \\
+C_{2211} & C_{2212} & C_{2213} & C_{2221} & C_{2222} & C_{2223} & C_{2231} & C_{2232} & C_{2233} \\
+C_{2311} & C_{2312} & C_{2313} & C_{2321} & C_{2322} & C_{2323} & C_{2331} & C_{2332} & C_{2333} \\
+C_{3111} & C_{3112} & C_{3113} & C_{3121} & C_{3122} & C_{3123} & C_{3131} & C_{3132} & C_{3133} \\
+C_{3211} & C_{3212} & C_{3213} & C_{3221} & C_{3222} & C_{3223} & C_{3231} & C_{3232} & C_{3233} \\
+C_{3311} & C_{3312} & C_{3313} & C_{3321} & C_{3322} & C_{3323} & C_{3331} & C_{3332} & C_{3333}
+\end{pmatrix}
+\]
+geschrieben werden kann.
+Dieser Elastizitätstensor muss für isotrope Materialien zwingend symmetrisch sein.
+Folglich gilt:
+\[
+\overline{\overline{C}}
+=
+\overline{\overline{C}}~^{T}
+.
+\]
+Die allgemeine Spannungsgleichung lautet nun:
+\[
+\vec\sigma
+=
+\overline{\overline{C}}\cdot\vec{\varepsilon}
+.
+\]
+Die Konstanten $C$ werden nun nach dem Hook'schen Gesetz mit Hilfe des Elastizitätsmoduls $E$ definiert.
+Da dieser Modul durch die eindimensionale Betrachtung definiert ist,
+muss für die dreidimensionale Betrachtung eine weitere Kennzahl eingeführt werden.
+Dies ist die Querdehnungszahl $\nu$ (auch Poisson-Zahl), welche durch
+\[
+\nu
+=
+\frac{\varepsilon_q}{\varepsilon}
+=
+\frac{\Delta b}{b_0}
+\]
+und
+\begin{align*}
+ \varepsilon &= \text{Längsdehnung [$-$]} \\
+ \varepsilon_q &= \text{Querdehnung [$-$]}
+\end{align*}
+definiert ist. Trägt man die Konstanten in die Matrix ein, ergibt sich
+\[
+\begin{pmatrix}
+ \sigma_{11}\\
+ \sigma_{12}\\
+ \sigma_{13}\\
+ \sigma_{21}\\
+ \sigma_{22}\\
+ \sigma_{23}\\
+ \sigma_{31}\\
+ \sigma_{32}\\
+ \sigma_{33}
+\end{pmatrix}
+=
+\frac{E}{(1+\nu)(1-2\nu)}
+\begin{pmatrix}
+ 1-2\nu & 0 & 0 & 0 & \nu & 0 & 0 & 0 & \nu \\
+ 0 &\frac{1}{4} & 0 &\frac{1}{4} & 0 & 0 & 0 & 0 & 0 \\
+ 0 & 0 &\frac{1}{4} & 0 & 0 & 0 &\frac{1}{4} & 0 & 0 \\
+ 0 &\frac{1}{4} & 0 &\frac{1}{4} & 0 & 0 & 0 & 0 & 0 \\
+ \nu & 0 & 0 & 0 & 1-2\nu & 0 & 0 & 0 & \nu \\
+ 0 & 0 & 0 & 0 & 0 &\frac{1}{4} & 0 &\frac{1}{4} & 0 \\
+ 0 & 0 &\frac{1}{4} & 0 & 0 & 0 &\frac{1}{4} & 0 & 0 \\
+ 0 & 0 & 0 & 0 & 0 &\frac{1}{4} & 0 &\frac{1}{4} & 0 \\
+ \nu & 0 & 0 & 0 & \nu & 0 & 0 & 0 & 1-2\nu
+\end{pmatrix}
+\begin{pmatrix}
+ \varepsilon_{11} \\
+ \varepsilon_{12} \\
+ \varepsilon_{13} \\
+ \varepsilon_{21} \\
+ \varepsilon_{22} \\
+ \varepsilon_{23} \\
+ \varepsilon_{31} \\
+ \varepsilon_{32} \\
+ \varepsilon_{33}
+\end{pmatrix}
+,
+\]
+welche ebenfalls als Indexnotation mit
+\[
+\sigma_{ij}
+=
+\sum_{k=1}^3
+\sum_{l=1}^3
+C_{ijkl}\cdot\varepsilon_{kl}
+\]
+ausgedrückt werden kann.
+Die Normalspannung $\sigma_{22}$ lässt sich exemplarisch als
+\[
+\sigma_{22}
+=
+\frac{E\cdot\nu}{(1+\nu)(1-2\nu)}\cdot\varepsilon_{11}+\frac{E}{(1+\nu)}\cdot\varepsilon_{22}+\frac{E\cdot\nu}{(1+\nu)(1-2\nu)}\cdot\varepsilon_{33}
+\]
+berechnen.
+
+Man betrachte nun die Eigenschaften des Elastizitätstensors.
+Dieser ist quadratisch und symmetrisch, die verschiedenen Einträge wechseln sich aber miteinander ab.
+Es ergeben sich keine Blöcke mit einheitlichen Einträgen.
+
+Allerdings weiss man, dass im isotropen Boden der Spannungs-, Dehnungs- und daher auch Elastizitätstensor symmetrisch sind.
+Wäre dem nicht so, würde sich das Material je nach Richtung unterschiedlich elastisch verhalten.
+Diese Symmetrie setzt daher voraus, dass
+\[
+\sigma_{12}
+=
+\sigma_{21}
+,
+\qquad
+\sigma_{13}
+=
+\sigma_{31}
+,
+\qquad
+\sigma_{23}
+=
+\sigma_{32}
+\]
+und folglich auch
+\[
+\varepsilon_{12}
+=
+\varepsilon_{21}
+,
+\qquad
+\varepsilon_{13}
+=
+\varepsilon_{31}
+,
+\qquad
+\varepsilon_{23}
+=
+\varepsilon_{32}
+\]
+gilt.
+Diese Eigenschaft wird durch die Voigt'sche Notation \cite{spannung:Voigtsche-Notation} ausgenutzt, um die Gleichung vereinfachen zu können.
+Durch diese Symmetrie gilt
+\[
+\overline{\sigma}
+=
+\begin{pmatrix}
+ \sigma_{11} & \sigma_{12} & \sigma_{13} \\
+ \sigma_{21} & \sigma_{22} & \sigma_{23} \\
+ \sigma_{31} & \sigma_{32} & \sigma_{33}
+\end{pmatrix}
+=
+\begin{pmatrix}
+ \sigma_{11} & \sigma_{12} & \sigma_{13} \\
+ & \sigma_{22} & \sigma_{23} \\
+ \text{sym} & & \sigma_{33}
+\end{pmatrix}
+\qquad
+\Rightarrow
+\qquad
+\vec{\sigma}
+=
+\begin{pmatrix}
+ \sigma_{11}\\
+ \sigma_{22}\\
+ \sigma_{33}\\
+ \sigma_{23}\\
+ \sigma_{13}\\
+ \sigma_{12}
+\end{pmatrix}
+\]
+und entsprechend
+\[
+\overline{\varepsilon}
+=
+\begin{pmatrix}
+ \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\
+ \varepsilon_{21} & \varepsilon_{22} & \varepsilon_{23} \\
+ \varepsilon_{31} & \varepsilon_{32} & \varepsilon_{33}
+\end{pmatrix}
+=
+\begin{pmatrix}
+ \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\
+ & \varepsilon_{22} & \varepsilon_{23} \\
+ \text{sym} & & \varepsilon_{33}
+\end{pmatrix}
+\qquad
+\Rightarrow
+\qquad
+\vec{\varepsilon}
+=
+\begin{pmatrix}
+ \varepsilon_{11} \\
+ \varepsilon_{22} \\
+ \varepsilon_{33} \\
+ \varepsilon_{23} \\
+ \varepsilon_{13} \\
+ \varepsilon_{12}
+\end{pmatrix}
+.
+\]
+
+Aus den Vereinfachungen der Voigt'schen Notation lassen sich die Spannungs- und Dehnungstensoren als Spaltenvektoren mit je sechs Einträgen darstellen.
+Der Elastizitätstensor kann entsprechend auf eine $6\times6$ Matrix reduziert werden.
+Es lässt sich nun eine reduzierte allgemeine Spannungsgleichung mit
+\[
+\vec{\sigma}
+=
+\overline{\overline{C}}\cdot\vec{\varepsilon}
+\]
+beziehungsweise
+\[
+\begin{pmatrix}
+ \sigma_{11} \\
+ \sigma_{22} \\
+ \sigma_{33} \\
+ \sigma_{23} \\
+ \sigma_{13} \\
+ \sigma_{12}
+\end{pmatrix}
+=
+\begin{pmatrix}
+ C_{1111} & C_{1122} & C_{1133} & C_{1123} & C_{1113} & C_{1112} \\
+ C_{2211} & C_{2222} & C_{2233} & C_{2223} & C_{2213} & C_{2212} \\
+ C_{3311} & C_{3322} & C_{3333} & C_{3323} & C_{3313} & C_{3312} \\
+ C_{2311} & C_{2322} & C_{2333} & C_{2323} & C_{2313} & C_{2312} \\
+ C_{1311} & C_{1322} & C_{1333} & C_{1323} & C_{1313} & C_{1312} \\
+ C_{1211} & C_{1222} & C_{1233} & C_{1223} & C_{1213} & C_{1212}
+\end{pmatrix}
+\begin{pmatrix}
+ \varepsilon_{11} \\
+ \varepsilon_{22} \\
+ \varepsilon_{33} \\
+ \varepsilon_{23} \\
+ \varepsilon_{13} \\
+ \varepsilon_{12}
+\end{pmatrix}
+\]
+beschreiben.
+Die Spannung $\sigma_{11}$ beispielsweise erhält man, wenn man die sechs Produkte aus den Konstanten $C$ und Dehnungen $\varepsilon$ summiert.
+Die Symmetrieeigenschaft des Elastizitätstensors bleibt auch hier erhalten.
+Somit lässt sich die reduzierte allgemeine Spannungsgleichung mit
+
+\[
+\begin{pmatrix}
+ \sigma_{11} \\
+ \sigma_{22} \\
+ \sigma_{33} \\
+ \sigma_{23} \\
+ \sigma_{13} \\
+ \sigma_{12}
+\end{pmatrix}
+=
+\begin{pmatrix}
+ C_{1111} & C_{1122} & C_{1133} & C_{1123} & C_{1113} & C_{1112} \\
+ & C_{2222} & C_{2233} & C_{2223} & C_{2213} & C_{2212} \\
+ & & C_{3333} & C_{3323} & C_{3313} & C_{3312} \\
+ & & & C_{2323} & C_{2313} & C_{2312} \\
+ & & & & C_{1313} & C_{1312} \\
+ \text{sym} & & & & & C_{1212}
+\end{pmatrix}
+\begin{pmatrix}
+ \varepsilon_{11} \\
+ \varepsilon_{22} \\
+ \varepsilon_{33} \\
+ \varepsilon_{23} \\
+ \varepsilon_{13} \\
+ \varepsilon_{12}
+\end{pmatrix}
+\]
+beschreiben.
+Die Konstanten $C$ werden wieder nach dem Hook'schen Gesetz definiert.
+Dies ergibt die Spannungsgleichung, welche weit möglichst vereinfacht ist:
+\[
+\begin{pmatrix}
+ \sigma_{11}\\
+ \sigma_{22}\\
+ \sigma_{33}\\
+ \sigma_{23}\\
+ \sigma_{13}\\
+ \sigma_{12}
+\end{pmatrix}
+=
+\frac{E}{(1+\nu)(1-2\nu)}
+\begin{pmatrix}
+ 1- 2\nu & \nu & \nu & 0 & 0 & 0\\
+ \nu & 1- 2\nu & \nu & 0 & 0 & 0\\
+ \nu & \nu & 1- 2\nu & 0 & 0 & 0\\
+ 0 & 0 & 0 & \frac{1}{2} & 0 & 0\\
+ 0 & 0 & 0 & 0 & \frac{1}{2} & 0\\
+ 0 & 0 & 0 & 0 & 0 & \frac{1}{2}
+\end{pmatrix}
+\begin{pmatrix}
+ \varepsilon_{11}\\
+ \varepsilon_{22}\\
+ \varepsilon_{33}\\
+ \varepsilon_{23}\\
+ \varepsilon_{13}\\
+ \varepsilon_{12}
+\end{pmatrix}
+.
+\]
+
+Im Elastizitätstensor fallen zwei $3\times3$ Blöcke auf, welche nur Einträge mit $0$ haben. Der Tensor besagt also,
+dass diese jeweiligen Dehnungen keinen Einfluss auf unsere Spannung haben.
+Man sieht nun auch ganz gut, dass sich im Vergleich zu der allgemeinen Spannungsgleichung, die Einträge verschoben haben.
+Da nach Voigt zuerst die Normalspannungen und anschliessend die Schubspannungen notiert worden sind, ergeben sich die $3\times3$ Blöcke.
+
+Man betrachte als Beispiel die Berechnung von $\sigma_{33}$.
+Es ist ersichtlich, dass die Schubdehnungen keinen Einfluss auf $\sigma_{33}$ haben.
+Der Einfluss der zu $\sigma_{33}$ äquivalenten Dehnung $\varepsilon_{33}$ hat den grössten Einfluss.
+Die anderen Normalspannungen $\sigma_{11}$ und $\sigma_{22}$ haben einen unter anderem mit $\nu$ korrigierten Einfluss.
+
+Von $\overline{\overline{C}}$ bildet man noch die inverse Matrix $\overline{\overline{C}}\mathstrut^{-1}$ um die Gleichung umstellen zu können.
+Dadurch erhält man die Dehnungsgleichung:
+
+\[
+\vec{\varepsilon}
+=
+\overline{\overline{C}}\mathstrut^{-1}\cdot \vec{\sigma}
+\]
+
+\[
+\begin{pmatrix}
+ \varepsilon_{11}\\
+ \varepsilon_{22}\\
+ \varepsilon_{33}\\
+ \varepsilon_{23}\\
+ \varepsilon_{13}\\
+ \varepsilon_{12}
+\end{pmatrix}
+=
+\frac{1}{E}
+\begin{pmatrix}
+ 1 & -\nu & -\nu & 0 & 0 & 0 \\
+ -\nu & 1 & -\nu & 0 & 0 & 0 \\
+ -\nu & -\nu & 1 & 0 & 0 & 0 \\
+ 0 & 0 & 0 & 2+2\nu & 0 & 0 \\
+ 0 & 0 & 0 & 0 & 2+2\nu & 0 \\
+ 0 & 0 & 0 & 0 & 0 & 2+2\nu
+\end{pmatrix}
+\begin{pmatrix}
+ \sigma_{11}\\
+ \sigma_{22}\\
+ \sigma_{33}\\
+ \sigma_{23}\\
+ \sigma_{13}\\
+ \sigma_{12}
+\end{pmatrix}
+.
+\]
+Die zwei $3\times3$ Blöcke links unten und rechts oben sind folglich noch vorhanden.
+Um wieder die Einflüsse der Parameter veranschaulichen zu können berechnet man die Dehnung
+\[
+\varepsilon_{22}
+=
+\frac{1}{E}\sigma_{22} - \frac{\nu}{E}\sigma_{11} - \frac{\nu}{E}\sigma_{33}
+=
+\frac{1}{E}\cdot(\sigma_{22}-\nu\cdot\sigma_{11}-\nu\cdot\sigma_{33})
+.
+\]
+Diese hängt wieder am meisten von $\sigma_{22}$ ab.
+Ist die Querdehnung $\nu$ grösser, so wird die Dehnung $\varepsilon_{22}$ reduziert.
+Bei inkompressiblen Medien, bei welchen keine Dehnungen und nur identische Normalspannungen auftreten können, ist folglich $\nu=0.5$.