aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/spannung/teil3.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/spannung/teil3.tex')
-rw-r--r--buch/papers/spannung/teil3.tex139
1 files changed, 102 insertions, 37 deletions
diff --git a/buch/papers/spannung/teil3.tex b/buch/papers/spannung/teil3.tex
index ce7d50f..8d99733 100644
--- a/buch/papers/spannung/teil3.tex
+++ b/buch/papers/spannung/teil3.tex
@@ -1,40 +1,105 @@
-%
-% teil3.tex -- Beispiel-File für Teil 3
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Teil 3
-\label{spannung:section:teil3}}
-\rhead{Teil 3}
-Sed ut perspiciatis unde omnis iste natus error sit voluptatem
-accusantium doloremque laudantium, totam rem aperiam, eaque ipsa
-quae ab illo inventore veritatis et quasi architecto beatae vitae
-dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit
-aspernatur aut odit aut fugit, sed quia consequuntur magni dolores
-eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam
-est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci
-velit, sed quia non numquam eius modi tempora incidunt ut labore
-et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima
-veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam,
-nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure
-reprehenderit qui in ea voluptate velit esse quam nihil molestiae
-consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla
-pariatur?
+\section{Die geotechnischen Invarianten\label{spannung:section:Die geotechnischen Invarianten}}
+\rhead{Die geotechnischen Invarianten}
+In vielen Fällen in der Geotechnik und auch in Versuchen hat man gleichmässige Belastungen über eine grössere Fläche.
+Durch eine solche Belastung auf den Boden, entstehen gleichermassen Spannungen in Richtung $2$ und $3$,
+wenn man von einem isotropen Bodenmaterial ausgeht.
+Folglich gilt:
-\subsection{De finibus bonorum et malorum
-\label{spannung:subsection:malorum}}
-At vero eos et accusamus et iusto odio dignissimos ducimus qui
-blanditiis praesentium voluptatum deleniti atque corrupti quos
-dolores et quas molestias excepturi sint occaecati cupiditate non
-provident, similique sunt in culpa qui officia deserunt mollitia
-animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis
-est et expedita distinctio. Nam libero tempore, cum soluta nobis
-est eligendi optio cumque nihil impedit quo minus id quod maxime
-placeat facere possimus, omnis voluptas assumenda est, omnis dolor
-repellendus. Temporibus autem quibusdam et aut officiis debitis aut
-rerum necessitatibus saepe eveniet ut et voluptates repudiandae
-sint et molestiae non recusandae. Itaque earum rerum hic tenetur a
-sapiente delectus, ut aut reiciendis voluptatibus maiores alias
-consequatur aut perferendis doloribus asperiores repellat.
+\[
+\sigma_{22}
+=
+\sigma_{33}
+.
+\]
+Dadurch wird der Spannungszustand vereinfacht.
+Diesen vereinfachten Spannungszustand kann man mit den zwei geotechnischen Invarianten abbilden.
+Die erste Invariante ist die volumetrische Spannung
+\[
+p
+=
+\frac{\sigma_{11}+\sigma_{22}+\sigma_{33}}{3}
+,
+\]
+welche als arithmetisches Mittel aller Normalspannungen im infinitesimalen Würfel definiert ist.
+Die zweite Invariante ist die deviatorische Spannung
+\[
+q
+=
+\sqrt{\frac{(\sigma_{11}-\sigma_{22})^{2}+(\sigma_{11}-\sigma_{33})^{2}+(\sigma_{22}-\sigma_{33})^{2}}{2}}
+.
+\]
+Diese Zusammenhänge werden im Skript [\cite{spannung:Stoffgesetze-und-numerische-Modellierung-in-der-Geotechnik}] aufgezeigt.
+Die hydrostatische Spannung $p$ kann gemäss Gleichung (Nr) als
+\[
+p
+=
+\frac{\sigma_{11}+2\sigma_{33}}{3}
+\]
+vereinfacht werden.
+Die deviatorische Spannung $q$ wird gemäss Gleichung (Nr) als
+\[
+q
+=
+\sigma_{11}-\sigma_{33}
+\]
+vereinfacht. Man kann $p$ als Isotrop und $q$ als Schub betrachten.
+Die Invarianten können mit der Spannungsformel (Nr..xxx) berechnet werden.
+Durch geschickte Umformung dieser Gleichung, lassen sich die Module als Faktor separieren.
+Dabei entstehen spezielle Faktoren mit den Dehnungskomponenten.
+So ergibt sich
+\[
+\overbrace{\frac{\sigma_{11}+2\sigma_{33}}{3}}^{p}
+=
+\frac{E}{3(1-2\nu)} \overbrace{(\varepsilon_{11} - 2\varepsilon_{33})}^{\varepsilon_{v}}
+\]
+und
+\[
+\overbrace{\sigma_{11}-\sigma_{33}}^{q}
+=
+\frac{3E}{2(1+\nu)} \overbrace{\frac{2}{3}(\varepsilon_{11} - \varepsilon_{33})}^{\varepsilon_{s}}
+.
+\]
+Die Faktoren mit den Dehnungskomponenten können so mit
+\[
+\varepsilon_{v}
+=
+(\varepsilon_{11} - 2\varepsilon_{33})
+\qquad
+\text{und}
+\qquad
+\varepsilon_{s}
+=
+\frac{2}{3}(\varepsilon_{11} - \varepsilon_{33})
+\]
+eingeführt werden, mit
+\begin{align*}
+ \varepsilon_{v} &= \text{Hydrostatische Dehnung [-]} \\
+ \varepsilon_{s} &= \text{Deviatorische Dehnung [-].}
+\end{align*}
+Die hydrostatische Dehnung $\varepsilon_{v}$ kann mit einer Kompression verglichen werden.
+Die deviatorische Dehnung $\varepsilon_{s}$ kann mit einer Verzerrung verglichen werden.
+Diese zwei Gleichungen kann man durch die Matrixschreibweise
+\[
+\begin{pmatrix}
+ q\\
+ p
+\end{pmatrix}
+=
+\begin{pmatrix}
+ \frac{3E}{2(1+\nu)} & 0 \\
+ 0 & \frac{E}{3(1-2\nu)}
+\end{pmatrix}
+\begin{pmatrix}
+ \varepsilon_{s}\\
+ \varepsilon_{v}
+\end{pmatrix}
+\]
+(sollte nummeriert sein) vereinfachen.
+Man hat so eine Matrix multipliziert mit einem Vektor und erhält einen Vektor.
+Änderungen des Spannungszustandes können mit dieser Gleichung vollumfänglich erfasst werden.
+
+Mit dieser Formel lassen sich verschieden Ergebnisse von Versuchen analysieren und berechnen.
+Ein solcher Versuch, den oft in der Geotechnik durchgeführt wird, ist der Oedometer-Versuch.
+Im nächsten Kapitel wird die Anwendung der Matrix an diesem Versuch beschrieben.