aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/spannung/teil4.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/spannung/teil4.tex')
-rw-r--r--buch/papers/spannung/teil4.tex79
1 files changed, 79 insertions, 0 deletions
diff --git a/buch/papers/spannung/teil4.tex b/buch/papers/spannung/teil4.tex
new file mode 100644
index 0000000..d524f13
--- /dev/null
+++ b/buch/papers/spannung/teil4.tex
@@ -0,0 +1,79 @@
+\section{Oedometer-Versuch\label{spannung:section:Oedometer-Versuch}}
+\rhead{Oedometer-Versuch}
+Mit dem Oedometer-Versuch kann der oedometrische Elastizitätsmodul $E_{OED}$ bestimmt werden.
+Dieser beschreibt ebenfalls das Verhältnis zwischen Spannung und Dehnung, allerdings unter anderen Bedingungen.
+Diese Bedingung ist das Verhindern der seitlichen Verformung, sprich der Dehnung in Richtung $1$ und $2$.
+Es wird ein Probeelement mit immer grösseren Gewichten belastet, welche gleichmässig auf das Material drücken.
+Die seitliche Verschiebung des Materials wird durch einen Stahlring verhindert.
+Die Probe wird sich so stetig verdichten.
+Das Volumen nimmt ab und die Dehnung nimmt immer mehr zu.
+Unter diesen Bedingungen wird der oedometrische Elastizitätsmodul mit steigender Dehnung zunehmen.
+
+Da im Boden das umgebende Material ähnlich eine seitliche Verformung verhindert,
+bildet dieser oedometrische Elastizitätsmodul die Realität besser ab, als der gewöhnliche Elastizitätsmodul.
+Durch dieses Verhindern des seitlichen Ausbrechens ist
+\[
+\varepsilon_{22}
+=
+\varepsilon_{33}
+=
+0
+\]
+aber auch
+\[
+\sigma_{22}
+=
+\sigma_{33}
+\neq 0
+.
+\]
+Die Spannung $\sigma_{11}$ wird durch die aufgebrachte Kraft mit
+\[
+\sigma_{11}
+=
+\frac{F}{A}
+\]
+und die Dehnung $\varepsilon_{11}$ jeweils mit den entsprechenden Setzungen berechnet.
+Diese Randbedingungen können in die vereinfachte Gleichung (Nrxxx) eingesetzt werden.
+Diese lautet nun:
+\[
+\begin{pmatrix}
+ \sigma_{11}-\sigma_{33} \\
+ \sigma_{11}+2\sigma_{33}
+\end{pmatrix}
+=
+\begin{pmatrix}
+ \frac{E_{OED}}{(1+\nu)} & 0 \\
+ 0 & \frac{E_{OED}}{3(1-2\nu)}
+\end{pmatrix}
+\begin{pmatrix}
+ \varepsilon_{11}\\
+ \varepsilon_{11}
+\end{pmatrix}
+.
+\]
+Daraus lässt sich bei jedem Setzungsgrad der oedometrische Elastitzitätsmodul $E_{OED}$ und die seitlichen Spannungen $\sigma_{33}$ mit den 2 Gleichungen
+\[
+\sigma_{11}-\sigma_{33}
+=
+\frac{E_{OED}}{(1+\nu)}\cdot\varepsilon_{11}
+\]
+und
+\[
+\sigma_{11}+2\sigma_{33}
+=
+\frac{E_{OED}}{3(1-2\nu)}\cdot\varepsilon_{11}
+\]
+berechnen.
+Mit diesen Gleichungen hat man das Gleichungssystem um $E_{OED}$ und $\sigma_{33}$ zu berechnen.
+Die Poisson-Zahl muss als Kennwert gemäss der Bodenklasse gewählt werden.
+Den Versuch kann man auf einem $\sigma$-$\varepsilon$-Diagramm abtragen (siehe Abbildung 1.7).
+Durch die Komprimierung nimmt der Boden mehr Spannung auf, und verformt sich zugleich weniger stark.
+Mit diesem ermittelten $E_{OED}$ kann man nun weitere Berechnungen für die Geotechnik durchführen.
+
+\begin{figure}
+ \centering
+ \includegraphics[width=0.5\linewidth,keepaspectratio]{papers/spannung/Grafiken/DiagrammOedometer-Versuch.png}
+ \caption{Diagramm Charakteristik verschiedener Elastizitätsmodule bei gleichem Material}
+ \label{fig:DiagrammOedometer-Versuch}
+\end{figure} \ No newline at end of file