aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/uebersicht.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/papers/uebersicht.tex')
-rw-r--r--buch/papers/uebersicht.tex16
1 files changed, 16 insertions, 0 deletions
diff --git a/buch/papers/uebersicht.tex b/buch/papers/uebersicht.tex
index 64b8863..f095947 100644
--- a/buch/papers/uebersicht.tex
+++ b/buch/papers/uebersicht.tex
@@ -13,6 +13,8 @@ grundlegenden Modelle werden dabei verfeinert, verallgemeinert
und auf vielfältige Weise angewandt.
Den Anfang machen {\em Robine Luchsinger} und {\em Pascal Andreas Schmid},
+\index{Luchsinger, Robine}%
+\index{Schmid, Pascal Andreas}%
die zeigen, wie man basierend auf der Adjazenzmatrix Suchalgorithmen
für Netzwerke aufbauen kann.
Sie konzentrieren sich dabei auf Verkehrsnetze, die die zusätzliche
@@ -23,6 +25,7 @@ Einfluss auf die Effizienz der Suchalgorithmen haben können.
Die naive Umsetzung der Definition der Matrizenmultiplikation in
ein Coputerprogramm ist nicht unbedingt die effizienteste.
{\em Michael Schmid} stellt die Algorithmen von Strassen und
+\index{Schmid, Michael}%
Windograd vor, welche ermöglichen, die Laufzeitkomplexität
von $O(n^3)$ auf $O(n^{2.8074})$ oder noch schneller zu verbessern.
Allerdings nur unter gewissen Voraussetzungen, die im Paper
@@ -31,6 +34,8 @@ ebenfalls diskutiert werden.
Eine der schönsten Anwendungen der Gruppentheorie ist die
Kristallographie.
{\em Naoki Pross} und {\em Tim Tönz} zeigen, wie man mit ihrer
+\index{Pross, Naoki}%
+\index{Tönz, Tim}%
Hilfe Kristalle klassifizieren kann, und sie illustrieren am Beispiel
der Piezoelektrizität, dass man auch physikalische Eigenschaften daraus
ableiten kann.
@@ -42,6 +47,8 @@ und DVDs, begegnet er uns heute auch in den allgegenwärtigen QR-Codes.
Ein ganzes Arsenal von algebraischen Methoden ist nötig, um seine
Funktionsweise zu verstehen.
{\em Joshua Bär} und {\em Michael Steiner} zeigen in vielen Einzelschritten,
+\index{Bär, Joshua}%
+\index{Steiner, Michael}%
wie die man die einzelnen Ideen an vertrauteren Beispielen aus der
elementaren Algebra und der Fourier-Theorie verstehen kann.
Die Übertragung in einen Polynomring über einem endlichen Körper
@@ -52,6 +59,7 @@ die diskrete Fourier-Transformation beide als Matrizen schreibt.
Wer glaubt, mit linearen Abbildungen lassen sich nur gradlinige
Objekte beschreiben, liegt völlig falsch.
Die Arbeit von {\em Alain Keller} zeigt, dass die Iteration von
+\index{Keller, Alain}%
affinen Abbildungen hochkomplexe Fraktale hervorbringen kann.
Solche iterierten Funktionsschemata erzeugen aber nicht nur schöne
Bilder, man kann daraus auch eine Idee zur Kompression von
@@ -64,6 +72,7 @@ brechen könnte.
Das McEliece-Kryptosystem kombiniert verschiedene Arten von Matrizen
mit zufälligem Rauschen und einem fehlerkorrigierenden Code.
Wie {\em Reto Fritsche} erklärt, kommt dabei ein Verschlüsselungsverfahren
+\index{Fritsche, Reto}%
heraus, welches nach heutigem Wissensstand gegen Angriffe mit
Quantencomputern resistent ist.
@@ -75,6 +84,8 @@ In der Ebene kann man die komplexen Zahlen als Modell verwenden,
wo Drehungen und Translationen durch einfache arithmetische
Operationen mit Zahlen beschrieben werden können.
{\em Marius Baumann} und {\em Thierry Schwaller} tauchen in die
+\index{Baumann, Marius}%
+\index{Schwaller, Thierry}%
geometrische Algebra ein, welche diese Idee verallgemeinert.
Sie illustrieren, wie sich mit geometrischer Algebra Bewegungen
in $\mathbb{R}^n$ einfach beschreiben lassen.
@@ -91,6 +102,8 @@ der von einem Gebäude im darunterliegenden Boden aufgebaut wird,
im Detail verstehen und modellieren können sollte.
Dazu muss man erst eine geeignete Darstellung finden.
{\em Thomas Reichlin} und {\em Adrian Schuler} zeigen, wie man
+\index{Reichlin, Thomas}%
+\index{Schuler, Adrian}%
dazu eigentlich über die Welt der Matrizen hinaus gehen muss und
sich mit sogenannten Tensoren herumschlagen muss.
Dank sinnvollen Annahmen über die reale Situation im Boden
@@ -107,6 +120,8 @@ aufzeichen kann.
Doch welcher Teil der aufgezeichneten Bewegung kommt vom Erdbeben
und welcher Teil ist Eigenschwingung der Messmasse?
Dieser Frage gehen {\em Fabio Viecelli} und {\em Lukas Zogg} nach.
+\index{Viecelli, Fabio}%
+\index{Zogg, Lukas}%
Die Antwort gelingt mit einem Klassiker unter den Ingenieur-Methoden:
dem Kalman-Filter.
Die Autoren stellen die für den Filter nötigen Matrizen zusammen
@@ -119,6 +134,7 @@ Doch wie findet man jetzt diejenige Zuteilung der Aufgaben
zu den Anbietern, die die Gesamtkosten minimiert.
Für dieses klassische Zuordnungsproblem ist die
von {\em Marc Kühne} beschriebene ungarische Methode,
+\index{Kühne, Marc}%
auch als Munkres-Algorithmus bekannt, eine besonders effiziente
Lösung.