aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--buch/papers/reedsolomon/RS presentation/RS.tex710
1 files changed, 709 insertions, 1 deletions
diff --git a/buch/papers/reedsolomon/RS presentation/RS.tex b/buch/papers/reedsolomon/RS presentation/RS.tex
index 65f8431..eecd66b 100644
--- a/buch/papers/reedsolomon/RS presentation/RS.tex
+++ b/buch/papers/reedsolomon/RS presentation/RS.tex
@@ -152,6 +152,7 @@
\end{pmatrix}
\]
\end{frame}
+
\section{Probleme und Fragen}
\begin{frame}
\frametitle{Probleme und Fragen}
@@ -162,4 +163,711 @@
Indem in einem Endlichen Körper gerechnet wird.
}
\end{frame}
-\end{document} \ No newline at end of file
+
+ \begin{frame}
+ \frametitle{Reed-Solomon in Endlichen Körpern}
+
+ \begin{itemize}
+ \item Warum Endliche Körper?
+
+ \qquad bessere Laufzeit
+
+ \vspace{10pt}
+
+ \item Nachricht = Nutzdaten + Fehlerkorrekturteil
+
+ \vspace{10pt}
+
+ \item den Fehlerkorrekturteil brauchen wir im Optimalfall nicht
+
+ \vspace{10pt}
+
+ \item Im Fehlerfall sollen wir aus der Nachricht ein Lokatorpolynom berechnen können, welches die Fehlerhaften Stellen beinhaltet
+
+% Wir sollten im Fehlerfall in der Lage sein, aus der Nachricht ein Lokatorpolynom zu berechnen, welches die Fehlerhaften Stellen beinhaltet
+
+ \end{itemize}
+
+% TODO
+
+% erklärung und einführung der endlichen körper, was wollen wir erreichen?
+
+% wir versenden im endefekt mehr daten als unsere nachricht umfasst, damit die korrektur sichergestellt werden kann
+
+% sollten wir fehler bekommen, was uns die korrekturstellen mitgeteilt wird, dann ist es unsere aufgabe ein lokatorpolynom zu finden, welches uns verrät, auf welchen zeilen der Fehler aufgetreten ist
+ \end{frame}
+%-------------------------------------------------------------------------------
+ \begin{frame}
+ \frametitle{Definition eines Beispiels}
+
+ \begin{itemize}
+
+ \item Endlicher Körper $q = 11$
+
+ \only<1->{ist eine Primzahl}
+
+ \only<1->{beinhaltet die Zahlen $\mathbb{Z}_{11} = [0,1,2,3,4,5,6,7,8,9,10]$}
+
+ \vspace{10pt}
+
+ \only<1->{\item Nachrichtenblock $n = q-1$}
+
+ wird an den Empfänger gesendet
+
+ \vspace{10pt}
+
+ \only<1->{\item max. Fehler $z = 2$}
+
+ maximale Anzahl von Fehler, die wir noch korrigieren können
+
+ \vspace{10pt}
+
+ \only<1->{\item Nutzlast $k = n -2t = 6$ Zahlen}
+
+ Fehlerstellen $2t = 4$ Zahlen
+
+ \only<1->{Nachricht $m = [0,0,0,0,4,7,2,5,8,1]$}
+
+ \only<1->{als Polynom $m(X) = 4X^5 + 7X^4 + 2X^3 + 5X^2 + 8X + 1$}
+
+ \end{itemize}
+
+ \end{frame}
+%-------------------------------------------------------------------------------
+ \begin{frame}
+ \frametitle{Codierung}
+
+ \begin{itemize}
+ \item Ansatz aus den Komplexen Zahlen mit der Fouriertransformation
+
+ \vspace{10pt}
+
+ \item $\mathrm{e}$ existiert nicht in $\mathbb{Z}_{11}$
+
+ \vspace{10pt}
+
+ \item wir suchen $a$ so, dass $a^i$ den gesamten Zahlenbereich von $\mathbb{Z}_{11}$ abdeckt
+
+ $\mathbb{Z}_{11}\setminus\{0\} = [a^0, a^1, a^2, a^3, a^4, a^5, a^6, a^7, a^8, a^9]$
+
+ \vspace{10pt}
+
+ \item wir wählen $a = 8$
+
+ $\mathbb{Z}_{11}\setminus\{0\} = [1,8,9,6,4,10,3,2,5,7]$
+
+ 8 ist eine Primitive Einheitswurzel
+
+ \vspace{10pt}
+
+ \item $m(8^0) = 4\cdot1 + 7\cdot1 + 2\cdot1 + 5\cdot1 + 8\cdot1 + 1 = 5$
+
+ $\Rightarrow$ \qquad können wir auch als Matrix schreiben
+
+ \end{itemize}
+
+ \end{frame}
+%-------------------------------------------------------------------------------
+ \begin{frame}
+ \frametitle{Codierung}
+
+ \begin{itemize}
+ \item Übertragungsvektor $V$
+
+ \item $V = A \cdot m$
+
+ \end{itemize}
+
+ \[
+ V = \begin{pmatrix}
+ 8^0& 8^0& 8^0& 8^0& 8^0& 8^0& 8^0& 8^0& 8^0& 8^0\\
+ 8^0& 8^1& 8^2& 8^3& 8^4& 8^5& 8^6& 8^7& 8^8& 8^9\\
+ 8^0& 8^2& 8^4& 8^6& 8^8& 8^{10}& 8^{12}& 8^{14}& 8^{16}& 8^{18}\\
+ 8^0& 8^3& 8^6& 8^9& 8^{12}& 8^{15}& 8^{18}& 8^{21}& 8^{24}& 8^{27}\\
+ 8^0& 8^4& 8^8& 8^{12}& 8^{16}& 8^{20}& 8^{24}& 8^{28}& 8^{32}& 8^{36}\\
+ 8^0& 8^5& 8^{10}& 8^{15}& 8^{20}& 8^{25}& 8^{30}& 8^{35}& 8^{40}& 8^{45}\\
+ 8^0& 8^6& 8^{12}& 8^{18}& 8^{24}& 8^{30}& 8^{36}& 8^{42}& 8^{48}& 8^{54}\\
+ 8^0& 8^7& 8^{14}& 8^{21}& 8^{28}& 8^{35}& 8^{42}& 8^{49}& 8^{56}& 8^{63}\\
+ 8^0& 8^8& 8^{16}& 8^{24}& 8^{32}& 8^{40}& 8^{48}& 8^{56}& 8^{64}& 8^{72}\\
+ 8^0& 8^9& 8^{18}& 8^{27}& 8^{36}& 8^{45}& 8^{54}& 8^{63}& 8^{72}& 8^{81}\\
+ \end{pmatrix}
+ \cdot
+ \begin{pmatrix}
+ 1 \\ 8 \\ 5 \\ 2 \\ 7 \\ 4 \\ 0 \\ 0 \\ 0 \\ 0 \\
+ \end{pmatrix}
+ \]
+
+ \begin{itemize}
+ \item $V = [5,3,6,5,2,10,2,7,10,4]$
+ \end{itemize}
+
+ \end{frame}
+%-------------------------------------------------------------------------------
+ \begin{frame}
+ \frametitle{Decodierung ohne Fehler}
+
+ \begin{itemize}
+ \item Der Empfänger erhält den unveränderten Vektor $V = [5,3,6,5,2,10,2,7,10,4]$
+
+ \vspace{10pt}
+
+ \item Wir suchen die Inverse der Matrix A
+
+ \end{itemize}
+
+ \begin{columns}[t]
+ \begin{column}{0.50\textwidth}
+
+ Inverse der Fouriertransformation
+ \vspace{10pt}
+ \[
+ F(\omega) = \int_{-\infty}^{\infty} f(t) \mathrm{e}^{-j\omega t} dt
+ \]
+ \vspace{10pt}
+ \[
+ f(t) = \frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) \mathrm{e}^{j \omega t} d\omega
+ \]
+
+ \end{column}
+ \begin{column}{0.50\textwidth}
+
+ Inverse von a
+ \vspace{10pt}
+ \[
+ 8^{1} \Rightarrow 8^{-1}
+ \]
+
+ Inverse finden wir über den Eulkidischen Algorithmus
+ \vspace{10pt}
+ \end{column}
+ \end{columns}
+
+ \end{frame}
+%-------------------------------------------------------------------------------
+ \begin{frame}
+ \frametitle{Der Euklidische Algorithmus}
+
+ \begin{columns}[t]
+ \begin{column}{0.50\textwidth}
+
+ Recap aus der Vorlesung:
+
+ Gegeben $a \in \mathbb{F}_p$, finde $b = a^{-1} \in \mathbb{F}_p$
+
+ \begin{tabular}{rcl}
+ $a b$ &$\equiv$& $1 \mod p$\\
+ $a b$ &$=$& $1 + n p$\\
+ $a b - n p$ &$=$& $1$\\
+ &&\\
+ $\operatorname{ggT}(a,p)$&$=$& $1$\\
+ $sa + tp$&$=$& $1$\\
+ $b$&$=$&$s$\\
+ $n$&$=$&$-t$
+ \end{tabular}
+
+ \end{column}
+ \begin{column}{0.50\textwidth}
+
+ \begin{center}
+
+ \begin{tabular}{| c | c c | c | c c |}
+ \hline
+ $k$ & $a_i$ & $b_i$ & $q_i$ & $c_i$ & $d_i$\\
+ \hline
+ & & & & $1$& $0$\\
+ $0$& $8$& $11$& $0$& $0$& $1$\\
+ $1$& $11$& $8$& $1$& $1$& $0$\\
+ $2$& $8$& $3$& $2$& $-1$& $1$\\
+ $3$& $3$& $2$& $1$& $3$& $-2$\\
+ $4$& $2$& $1$& $2$& $-4$& $3$\\
+ $5$& $1$& $0$& & $11$& $-8$\\
+ \hline
+ \end{tabular}
+
+ \vspace{10pt}
+
+ \begin{tabular}{rcl}
+ $-4\cdot 8 + 3 \cdot 11$ &$=$& $1$\\
+ $7 \cdot 8 + 3 \cdot 11$ &$=$& $1$\\
+ $8^{-1}$ &$=$& $7$
+
+ \end{tabular}
+
+ \end{center}
+
+ \end{column}
+ \end{columns}
+
+ \end{frame}
+%-------------------------------------------------------------------------------
+ \begin{frame}
+ \frametitle{Decodirung mit Inverser Matrix}
+
+ \begin{itemize}
+ \item $V = [5,3,6,5,2,10,2,7,10,4]$
+
+ \item $m = 1/10 \cdot A^{-1} \cdot V$
+
+ \item $m = 10 \cdot A^{-1} \cdot V$
+
+ \end{itemize}
+
+ \[
+ m = \begin{pmatrix}
+ 7^0& 7^0& 7^0& 7^0& 7^0& 7^0& 7^0& 7^0& 7^0& 7^0\\
+ 7^0& 7^1& 7^2& 7^3& 7^4& 7^5& 7^6& 7^7& 7^8& 7^9\\
+ 7^0& 7^2& 7^4& 7^6& 7^8& 7^{10}& 7^{12}& 7^{14}& 7^{16}& 7^{18}\\
+ 7^0& 7^3& 7^6& 7^9& 7^{12}& 7^{15}& 7^{18}& 7^{21}& 7^{24}& 7^{27}\\
+ 7^0& 7^4& 7^8& 7^{12}& 7^{16}& 7^{20}& 7^{24}& 7^{28}& 7^{32}& 7^{36}\\
+ 7^0& 7^5& 7^{10}& 7^{15}& 7^{20}& 7^{25}& 7^{30}& 7^{35}& 7^{40}& 7^{45}\\
+ 7^0& 7^6& 7^{12}& 7^{18}& 7^{24}& 7^{30}& 7^{36}& 7^{42}& 7^{48}& 7^{54}\\
+ 7^0& 7^7& 7^{14}& 7^{21}& 7^{28}& 7^{35}& 7^{42}& 7^{49}& 7^{56}& 7^{63}\\
+ 7^0& 7^8& 7^{16}& 7^{24}& 7^{32}& 7^{40}& 7^{48}& 7^{56}& 7^{64}& 7^{72}\\
+ 7^0& 7^9& 7^{18}& 7^{27}& 7^{36}& 7^{45}& 7^{54}& 7^{63}& 7^{72}& 7^{81}\\
+ \end{pmatrix}
+ \cdot
+ \begin{pmatrix}
+ 5 \\ 3 \\ 6 \\ 5 \\ 2 \\ 10 \\ 2 \\ 7 \\ 10 \\ 4 \\
+ \end{pmatrix}
+ \]
+
+ \begin{itemize}
+ \item $m = [0,0,0,0,4,7,2,5,8,1]$
+ \end{itemize}
+
+ \end{frame}
+%-------------------------------------------------------------------------------
+ \begin{frame}
+ \frametitle{Decodierung mit Fehler - Ansatz}
+
+ \begin{itemize}
+ \item Gesendet: $V = [5,3,6,5,2,10,2,7,10,4]$
+
+ \item Empfangen: $W = [5,3,6,8,2,10,2,7,1,4]$
+
+ \item Rücktransformation: $r = [\underbrace{5,7,4,10,}_{Fehlerstellen}5,4,5,7,6,7]$
+ \end{itemize}
+
+ Wie finden wir die Fehler?
+
+ \begin{itemize}
+ \item $m(X) = 4X^5 + 7X^4 + 2X^3 + 5X^2 + 8X + 1$
+
+ \item $r(X) = 5X^9 + 7X^8 + 4X^7 + 10X^6 + 5X^5 + 4X^4 + 5X^3 + 7X^2 + 6X + 7$
+
+ \item $e(X) = r(X) - m(X)$
+ \end{itemize}
+
+ \begin{center}
+
+ \begin{tabular}{c c c c c c c c c c c}
+ \hline
+ $i$& $0$& $1$& $2$& $3$& $4$& $5$& $6$& $7$& $8$& $9$\\
+ \hline
+ $r(a^{i})$& $5$& $3$& $6$& $8$& $2$& $10$& $2$& $7$& $1$& $4$\\
+ $m(a^{i})$& $5$& $3$& $6$& $5$& $2$& $10$& $2$& $7$& $10$& $4$\\
+ $e(a^{i})$& $0$& $0$& $0$& $3$& $0$& $0$& $0$& $0$& $2$& $0$\\
+ \hline
+ \end{tabular}
+
+ \end{center}
+
+ \begin{itemize}
+ \item Alle Stellen, die nicht Null sind, sind Fehler
+ \end{itemize}
+
+ \end{frame}
+%-------------------------------------------------------------------------------
+ \begin{frame}
+ \frametitle{Nullstellen des Fehlerpolynoms finden}
+
+ \begin{itemize}
+ \item Satz von Fermat: $f(X) = X^{q-1}-1=0$
+
+ \vspace{10pt}
+
+ \item $f(X) = X^{10}-1 = 0$ \qquad für $X = [1,2,3,4,5,6,7,8,9,10]$
+
+ \vspace{10pt}
+
+ \item $f(X) = (X-a^0)(X-a^1)(X-a^2)(X-a^3)(X-a^4)(X-a^5)(X-a^6) \cdot$
+
+ \qquad \qquad $(X-a^7)(X-a^8)(X-a^9)$
+
+ \vspace{10pt}
+
+ \item $e(X) = (X-a^0)(X-a^1)(X-a^2) \qquad \qquad (X-a^4)(X-a^5)(X-a^6) \cdot$
+
+ \qquad \qquad $(X-a^7) \qquad \qquad (X-a^9) \cdot p(x)$
+
+ \vspace{10pt}
+
+ \item $\operatorname{ggT}$ gibt uns eine Liste der Nullstellen, an denen es keine Fehler gegeben hat
+
+ \vspace{10pt}
+
+ $\operatorname{ggT}(f(X),e(X)) = (X-a^0)(X-a^1)(X-a^2) \qquad \qquad (X-a^4)(X-a^5)(X-a^6) \cdot$
+
+ \qquad \qquad \qquad \qquad $(X-a^7) \qquad \qquad (X-a^9)$
+
+ \end{itemize}
+
+ \end{frame}
+%-------------------------------------------------------------------------------
+ \begin{frame}
+ \frametitle{Nullstellen des Fehlerpolynoms finden}
+
+ \begin{itemize}
+
+ \item Satz von Fermat: $f(X) = X^{q-1}-1=0$
+
+ \vspace{10pt}
+
+ \item $f(X) = X^{10}-1 = 0$ \qquad für $X = [1,2,3,4,5,6,7,8,9,10]$
+
+ \vspace{10pt}
+
+ \item $f(X) = (X-a^0)(X-a^1)(X-a^2)(X-a^3)(X-a^4)(X-a^5)(X-a^6) \cdot$
+
+ \qquad \qquad $(X-a^7)(X-a^8)(X-a^9)$
+
+ \vspace{10pt}
+
+ \item $e(X) = (X-a^0)(X-a^1)(X-a^2) \qquad \qquad (X-a^4)(X-a^5)(X-a^6) \cdot$
+
+ \qquad \qquad $(X-a^7) \qquad \qquad (X-a^9) \cdot p(x)$
+
+ \vspace{10pt}
+
+ \item $\operatorname{kgV}$ gibt uns eine Liste von aller Nullstellen, die wir in $e$ und $d$ zerlegen können
+
+ \vspace{10pt}
+
+ $\operatorname{kgV}(f(X),e(X)) = (X-a^0)(X-a^1)(X-a^2)(X-a^3)(X-a^4)(X-a^5)(X-a^6) \cdot $
+
+ \qquad \qquad \qquad \qquad $(X-a^7)(X-a^8)(X-a^9) \cdot q(X)$
+
+ $= d(X) \cdot e(X)$
+
+ \vspace{10pt}
+
+ \item Lokatorpolynom $d(X) = (X-a^3)(X-a^8)$
+
+ \end{itemize}
+
+ \end{frame}
+%-------------------------------------------------------------------------------
+ \begin{frame}
+ \frametitle{kennen wir $e$?}
+
+ \begin{itemize}
+
+ \item $e$ ist unbekannt auf der Empfängerseite
+
+ \vspace{10pt}
+
+ \item $e(X) = r(X) - m(X)$ \qquad $\rightarrow$ \qquad $m(X)$ ist unbekannt?
+
+ \vspace{10pt}
+
+ \item $m$ ist nicht gänzlich unbekannt: $m = [0,0,0,0,?,?,?,?,?,?]$
+
+ In den bekannten Stellen liegt auch die Information, wo es Fehler gegeben hat
+
+ \vspace{10pt}
+
+ \item daraus folgt $e(X) = 5X^9 + 7X^8 + 4X^7 + 10X^6 + p(X)$
+
+ \vspace{10pt}
+
+ \item $f(X) = X^{10} - 1 = X^{10} + 10$
+
+ \vspace{10pt}
+
+ \item jetzt können wir den $\operatorname{ggT}$ von $f(X)$ und $e(X)$ berechnen
+ \end{itemize}
+
+ \end{frame}
+%-------------------------------------------------------------------------------
+ \begin{frame}
+ \frametitle{Der Euklidische Algorithmus (nochmal)}
+
+ $\operatorname{ggT}(f(X),e(X))$ hat den Grad 8
+
+ \[
+ \arraycolsep=1.4pt
+ \begin{array}{rcrcrcrcccrcrcrcrcrcrcrcrcr}
+ X^{10}& & & & & & &+& 10& & & & &:&5X^9&+&7X^8&+& 4X^7&+&10X^6&+&p(X)&=&9X&+&5\\
+ X^{10}&+& 8X^9&+& 3X^8&+&2X^7&+& p(X)& & & & & & & & & & & & & & & & \\ \cline{1-9}
+ && 3X^9&+& 8X^8&+& 9X^7&+& p(X)& & & & & & & & & & & & \\
+ && 3X^9&+& 2X^8&+& 9X^7&+& p(X)& & & & & & & & & & & & \\ \cline{3-9}
+ & & & &6X^8&+&0X^7&+&p(X)& & & & & & & & & & & & \\
+ \end{array}
+ \]
+
+ \[
+ \arraycolsep=1.4pt
+ \begin{array}{rcrcrcrcccrcrcrcrcrcrcrcrcr}
+ 5X^9&+& 7X^8&+& 4X^7&+& 10X^6&+& p(X)& & & & &:&6X^8&+&0X^7& & & & & & &=&10X&+&3\\
+ 5X^9&+& 0X^8&+& p(X)& & & & & & & & & & & & & & & & & & & & \\ \cline{1-5}
+ && 7X^8&+& p(X)& & & & & & & & & & & & & & & & \\
+ \end{array}
+ \]
+
+ \vspace{10pt}
+
+ $\operatorname{ggT}(f(X),e(X)) = 6X^8$
+
+ \vspace{10pt}
+
+ $\operatorname{kgV}$ durch den erweiterten Euklidischen Algorithmus bestimmen
+
+ \end{frame}
+
+%-------------------------------------------------------------------------------
+ \begin{frame}
+ \frametitle{Der Erweiterte Euklidische Algorithmus}
+
+ \begin{center}
+
+ \begin{tabular}{| c | c | c c |}
+ \hline
+ $k$ & $q_i$ & $e_i$ & $f_i$\\
+ \hline
+ & & $0$& $1$\\
+ $0$& $9X + 5$& $1$& $0$\\
+ $1$& $10X + 3$& $9X+5$& $1$\\
+ $2$& & $2X^2 + 0X + 5$& $10X + 3$\\
+ \hline
+ \end{tabular}
+
+ \end{center}
+
+ \vspace{10pt}
+
+ \begin{tabular}{ll}
+ Somit erhalten wir den Faktor& $d(X) = 2X^2 + 5$\\
+ Faktorisiert erhalten wir& $d(X) = 2(X-5)(X-6)$\\
+ Lokatorpolynom& $d(X) = (X-a^i)(X-a^i)$
+ \end{tabular}
+
+ \vspace{10pt}
+
+ \begin{center}
+ $a^i = 5 \qquad \Rightarrow \qquad i = 3$
+
+ $a^i = 6 \qquad \Rightarrow \qquad i = 8$
+ \end{center}
+
+ $D = [3,8]$
+
+ \end{frame}
+%-------------------------------------------------------------------------------
+ \begin{frame}
+ \frametitle{Rekonstruktion der Nachricht}
+
+ \begin{itemize}
+
+ \item $W = [5,3,6,8,2,10,2,7,1,4]$
+
+ \item $D = [3,8]$
+
+ \end{itemize}
+
+ \[
+ \begin{pmatrix}
+ 5 \\ 3 \\ 6 \\ 8 \\ 2 \\ 10 \\ 2 \\ 7 \\ 1 \\ 4 \\
+ \end{pmatrix}
+ =
+ \begin{pmatrix}
+ 8^0& 8^0& 8^0& 8^0& 8^0& 8^0& 8^0& 8^0& 8^0& 8^0\\
+ 8^0& 8^1& 8^2& 8^3& 8^4& 8^5& 8^6& 8^7& 8^8& 8^9\\
+ 8^0& 8^2& 8^4& 8^6& 8^8& 8^{10}& 8^{12}& 8^{14}& 8^{16}& 8^{18}\\
+ 8^0& 8^3& 8^6& 8^9& 8^{12}& 8^{15}& 8^{18}& 8^{21}& 8^{24}& 8^{27}\\
+ 8^0& 8^4& 8^8& 8^{12}& 8^{16}& 8^{20}& 8^{24}& 8^{28}& 8^{32}& 8^{36}\\
+ 8^0& 8^5& 8^{10}& 8^{15}& 8^{20}& 8^{25}& 8^{30}& 8^{35}& 8^{40}& 8^{45}\\
+ 8^0& 8^6& 8^{12}& 8^{18}& 8^{24}& 8^{30}& 8^{36}& 8^{42}& 8^{48}& 8^{54}\\
+ 8^0& 8^7& 8^{14}& 8^{21}& 8^{28}& 8^{35}& 8^{42}& 8^{49}& 8^{56}& 8^{63}\\
+ 8^0& 8^8& 8^{16}& 8^{24}& 8^{32}& 8^{40}& 8^{48}& 8^{56}& 8^{64}& 8^{72}\\
+ 8^0& 8^9& 8^{18}& 8^{27}& 8^{36}& 8^{45}& 8^{54}& 8^{63}& 8^{72}& 8^{81}\\
+ \end{pmatrix}
+ \cdot
+ \begin{pmatrix}
+ m_0 \\ m_1 \\ m_2 \\ m_3 \\ m_4 \\ m_5 \\ m_6 \\ m_7 \\ m_8 \\ m_9 \\
+ \end{pmatrix}
+ \]
+
+ \begin{itemize}
+ \item Fehlerstellen entfernen
+ \end{itemize}
+
+ \end{frame}
+%-------------------------------------------------------------------------------
+ \begin{frame}
+ \frametitle{Rekonstruktion der Nachricht}
+
+ \[
+ \begin{pmatrix}
+ 5 \\ 3 \\ 6 \\ 2 \\ 10 \\ 2 \\ 7 \\ 4 \\
+ \end{pmatrix}
+ =
+ \begin{pmatrix}
+ 8^0& 8^0& 8^0& 8^0& 8^0& 8^0& 8^0& 8^0& 8^0& 8^0\\
+ 8^0& 8^1& 8^2& 8^3& 8^4& 8^5& 8^6& 8^7& 8^8& 8^9\\
+ 8^0& 8^2& 8^4& 8^6& 8^8& 8^{10}& 8^{12}& 8^{14}& 8^{16}& 8^{18}\\
+ 8^0& 8^4& 8^8& 8^{12}& 8^{16}& 8^{20}& 8^{24}& 8^{28}& 8^{32}& 8^{36}\\
+ 8^0& 8^5& 8^{10}& 8^{15}& 8^{20}& 8^{25}& 8^{30}& 8^{35}& 8^{40}& 8^{45}\\
+ 8^0& 8^6& 8^{12}& 8^{18}& 8^{24}& 8^{30}& 8^{36}& 8^{42}& 8^{48}& 8^{54}\\
+ 8^0& 8^7& 8^{14}& 8^{21}& 8^{28}& 8^{35}& 8^{42}& 8^{49}& 8^{56}& 8^{63}\\
+ 8^0& 8^9& 8^{18}& 8^{27}& 8^{36}& 8^{45}& 8^{54}& 8^{63}& 8^{72}& 8^{81}\\
+ \end{pmatrix}
+ \cdot
+ \begin{pmatrix}
+ m_0 \\ m_1 \\ m_2 \\ m_3 \\ m_4 \\ m_5 \\ m_6 \\ m_7 \\ m_8 \\ m_9 \\
+ \end{pmatrix}
+ \]
+
+ \begin{itemize}
+ \item Nullstellen entfernen
+ \end{itemize}
+
+ \end{frame}
+%-------------------------------------------------------------------------------
+ \begin{frame}
+ \frametitle{Rekonstruktion der Nachricht}
+
+ \[
+ \begin{pmatrix}
+ 5 \\ 3 \\ 6 \\ 2 \\ 10 \\ 2 \\ 7 \\ 4 \\
+ \end{pmatrix}
+ =
+ \begin{pmatrix}
+ 8^0& 8^0& 8^0& 8^0& 8^0& 8^0\\
+ 8^0& 8^1& 8^2& 8^3& 8^4& 8^5\\
+ 8^0& 8^2& 8^4& 8^6& 8^8& 8^{10}\\
+ 8^0& 8^4& 8^8& 8^{12}& 8^{16}& 8^{20}\\
+ 8^0& 8^5& 8^{10}& 8^{15}& 8^{20}& 8^{25}\\
+ 8^0& 8^6& 8^{12}& 8^{18}& 8^{24}& 8^{30}\\
+ 8^0& 8^7& 8^{14}& 8^{21}& 8^{28}& 8^{35}\\
+ 8^0& 8^9& 8^{18}& 8^{27}& 8^{36}& 8^{45}\\
+ \end{pmatrix}
+ \cdot
+ \begin{pmatrix}
+ m_0 \\ m_1 \\ m_2 \\ m_3 \\ m_4 \\ m_5 \\
+ \end{pmatrix}
+ \]
+
+ \vspace{5pt}
+
+ \begin{itemize}
+ \item Matrix in eine Quadratische Form bringen
+ \end{itemize}
+
+ \end{frame}
+%-------------------------------------------------------------------------------
+ \begin{frame}
+ \frametitle{Rekonstruktion der Nachricht}
+
+ \[
+ \begin{pmatrix}
+ 5 \\ 3 \\ 6 \\ 2 \\ 10 \\ 2 \\
+ \end{pmatrix}
+ =
+ \begin{pmatrix}
+ 8^0& 8^0& 8^0& 8^0& 8^0& 8^0\\
+ 8^0& 8^1& 8^2& 8^3& 8^4& 8^5\\
+ 8^0& 8^2& 8^4& 8^6& 8^8& 8^{10}\\
+ 8^0& 8^4& 8^8& 8^{12}& 8^{16}& 8^{20}\\
+ 8^0& 8^5& 8^{10}& 8^{15}& 8^{20}& 8^{25}\\
+ 8^0& 8^6& 8^{12}& 8^{18}& 8^{24}& 8^{30}\\
+ \end{pmatrix}
+ \cdot
+ \begin{pmatrix}
+ m_0 \\ m_1 \\ m_2 \\ m_3 \\ m_4 \\ m_5 \\
+ \end{pmatrix}
+ \]
+
+ \vspace{5pt}
+
+ \begin{itemize}
+ \item Matrix Invertieren
+ \end{itemize}
+
+ \end{frame}
+%-------------------------------------------------------------------------------
+ \begin{frame}
+ \frametitle{Rekonstruktion der Nachricht}
+
+ \[
+ \begin{pmatrix}
+ 5 \\ 3 \\ 6 \\ 2 \\ 10 \\ 2 \\
+ \end{pmatrix}
+ =
+ \begin{pmatrix}
+ 1& 1& 1& 1& 1& 1\\
+ 1& 8& 9& 6& 4& 10\\
+ 1& 9& 4& 3& 5& 1\\
+ 1& 4& 5& 9& 3& 1\\
+ 1& 10& 1& 10& 1& 10\\
+ 1& 3& 9& 5& 4& 1\\
+ \end{pmatrix}
+ \cdot
+ \begin{pmatrix}
+ m_0 \\ m_1 \\ m_2 \\ m_3 \\ m_4 \\ m_5 \\
+ \end{pmatrix}
+ \]
+
+ \begin{center}
+ $\Downarrow$
+ \end{center}
+ \[
+ \begin{pmatrix}
+ m_0 \\ m_1 \\ m_2 \\ m_3 \\ m_4 \\ m_5 \\
+ \end{pmatrix}
+ =
+ \begin{pmatrix}
+ 6& 4& 4& 6& 2& 1\\
+ 2& 7& 10& 3& 4& 7\\
+ 1& 8& 9& 8& 3& 4\\
+ 3& 6& 6& 4& 5& 9\\
+ 10& 10& 9& 8& 1& 6\\
+ 1& 9& 6& 4& 7& 6\\
+ \end{pmatrix}
+ \cdot
+ \begin{pmatrix}
+ 5 \\ 3 \\ 6 \\ 2 \\ 10 \\ 2 \\
+ \end{pmatrix}
+ \]
+
+ \end{frame}
+%-------------------------------------------------------------------------------
+ \begin{frame}
+ \frametitle{Rekonstruktion der Nachricht}
+
+ \[
+ \begin{pmatrix}
+ m_0 \\ m_1 \\ m_2 \\ m_3 \\ m_4 \\ m_5 \\
+ \end{pmatrix}
+ =
+ \begin{pmatrix}
+ 6& 4& 4& 6& 2& 1\\
+ 2& 7& 10& 3& 4& 7\\
+ 1& 8& 9& 8& 3& 4\\
+ 3& 6& 6& 4& 5& 9\\
+ 10& 10& 9& 8& 1& 6\\
+ 1& 9& 6& 4& 7& 6\\
+ \end{pmatrix}
+ \cdot
+ \begin{pmatrix}
+ 5 \\ 3 \\ 6 \\ 2 \\ 10 \\ 2 \\
+ \end{pmatrix}
+ \]
+
+ \begin{itemize}
+ \item $m = [4,7,2,5,8,1]$
+ \end{itemize}
+
+ \end{frame}
+%-------------------------------------------------------------------------------
+
+\end{document}