diff options
Diffstat (limited to 'buch')
-rw-r--r-- | buch/papers/reedsolomon/dtf.tex | 111 | ||||
-rw-r--r-- | buch/papers/reedsolomon/figures/plotfft.pdf | bin | 59617 -> 59617 bytes | |||
-rw-r--r-- | buch/papers/reedsolomon/idee.tex | 75 | ||||
-rw-r--r-- | buch/papers/reedsolomon/standalone/standalone.pdf | bin | 1835615 -> 1835758 bytes | |||
-rw-r--r-- | buch/papers/reedsolomon/tikz/plotfft.tex | 4 | ||||
-rw-r--r-- | buch/papers/reedsolomon/tikz/plotfftraw.tex | 80 | ||||
-rw-r--r-- | buch/papers/reedsolomon/tikz/polynom2.tex | 2 | ||||
-rw-r--r-- | buch/papers/reedsolomon/tikz/polynomraw.tex | 50 |
8 files changed, 231 insertions, 91 deletions
diff --git a/buch/papers/reedsolomon/dtf.tex b/buch/papers/reedsolomon/dtf.tex index e9aacfb..4552bed 100644 --- a/buch/papers/reedsolomon/dtf.tex +++ b/buch/papers/reedsolomon/dtf.tex @@ -1,74 +1,85 @@ % -% teil3.tex -- Beispiel-File für Teil 3 +% dtf.tex -- Idee mit DFT % -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% -\section{Übertragung mit hilfe der Diskrete Fourier Transformation +\section{Übertragung mit Hilfe der Diskrten Fourientransformation \label{reedsolomon:section:dtf}} \rhead{Umwandlung mit DTF} -Um die Polynominterpolation zu umgehen, gehen wir nun über in die Fourientransformation. +Um die Polynominterpolation zu umgehen, gehen wir nun über in die Fourietransformation. Dies wird weder eine Erklärung der Forientransorfmation, noch ein genauer gebrauch für den Reed-Solomon-Code. -Dieser Abschnitt zeigt nur wie die Fourientransformation auf Fehler reagiert. -wobei sie dann bei späteren Berchnungen ganz nützlich ist. +Dieser Abschnitt zeigt nur wie die Fourietransformation auf Fehler reagiert. +Das ganze zeigen wir mit einem Beispiel einer Übertragung von Zahlen mit Hilfe der Fourietransformation. \subsection{Diskrete Fourietransformation Zusamenhang \label{reedsolomon:subsection:dtfzusamenhang}} Mit hilfe der Fourietransformation werden die \textcolor{blue}{blauen Datenpunkte} transformiert, zu den \textcolor{darkgreen}{grünen Übertragungspunkten}. Durch eine Rücktransformation könnnen die \textcolor{blue}{blauen Datenpunkte} wieder rekonstruiert werden. -Nun zur definition der Diskrete Fourietransformation, diese ist definiert als -\begin{equation} - \hat{c}_{k} - = \frac{1}{N} \sum_{n=0}^{N-1} - {f}_n \cdot e^{-\frac{2\pi j}{N} \cdot kn} - ,\label{reedsolomon:DFT} -\end{equation} -wenn man nun -\begin{equation} - w = - e^{-\frac{2\pi j}{N} k} - \label{reedsolomon:DFT_summand} -\end{equation} -ersetzte, und $N$ konstantbleibt, erhält man -\begin{equation} - \hat{c}_{k}= - \frac{1}{N}( {f}_0 w^0 + {f}_1 w^1 + {f}_2 w^2 + \dots + {f}_{N-1} w^N) - \label{reedsolomon:DFT_polynom} -\end{equation} -was überaust ähnlich zu unserem Polynomidee ist. -\subsection{Beispiel +\subsubsection{Beispiel einer Übertragung \label{reedsolomon:subsection:Übertragungsabfolge}} Der Auftrag ist nun 64 Daten zu übertragen und nach 32 Fehler abzusicheren, 16 Fehler erkennen und rekonstruieren. -Dieser Auftrag soll mittels Fouriertransformation bewerkstelligt werden. -In der Abbildung \ref{reedsolomon:subsection:Übertragungsabfolge} sieht man dies Schritt für schritt, +Dieser Auftrag soll mittels Fouriertransformation bewerkstelligt werden. +In der Abbildung \ref{reedsolomon:subsection:Übertragungsabfolge} sieht man dies Schritt für Schritt, und hier werden die einzelne Schritte erklärt: \begin{enumerate}[(1)] -\item Das Signal hat 64 die Daten, Zahlen welche übertragen werden sollen. -Dabei zusätzlich nach 16 Fehler abgesichert, macht insgesamt 96 Übertragungszahlen. -(siehe Abschnitt \externaldocument{papers/reedsolomon/idee}\ref{reedsolomon:section:Fehlerkorrekturstellen}) -Die 32 Fehlerkorrekturstellen werden als Null Übertragen -\item Nun wurde mittels der diskreten Fourientransformation diese 96 codiert. -Das heisst alle Informationen ist in alle Zahlenvorhanden. (Auch die Fehlerkorrekturstellen Null) -\item Nun kommen drei Fehler dazu an den Übertragungsstellen 7, 21 und 75.(die Skala ist Rechts) -Die Fehler können auf den ganzen 96 Übertragungswerten liegen, wie die 75 zeigt. -\item Dieses wird nun Empfangen und mittels inversen diskreten Fourientransormation, wieder rücktransformiert.(Iklusive der Fehler) -\item Nun sieht man den Fehler im Decodieren in den Übertragungsstellen 64 bis 96, da es dort nicht mehr Null ist. -\item Nimmt man nun nur diese Stellen 64 bis 96, dies definieren wir als Syndrom, und transformiert nur dieses Syndrom. -\item Bekommt man die Fehlerstellen wieder, zwar nichtso genau, dennoch erkennt man wo die Fehler stattgefunden haben. -Dies definieren wir als Locator. -\end{enumerate} -Nun haben wir mit Hilfe der Fourietransformation die 3 Fehlerstellen durch das Syndrom lokalisiert, -jetzt gilt es nur noch diese zu korrigieren und wir haben unser originales Signal wieder. - + \item Das Signal hat 64 die Daten $k$, hier zufällige Zahlen, welche übertragen werden sollen. + Zusätzlich soll nach 16 Fehler $t$, die rekonstruierbar sind abgesichert werden. + Das macht dann insgesamt $k + 2t = + 64 +2 \cdot 16= 96$ Übertragungszahlen. + (siehe Abschnitt \externaldocument{papers/reedsolomon/idee}\ref{reedsolomon:section:Fehlerkorrekturstellen}) + Die 32 Fehlerkorrekturstellen werden als Nullzahlen Übertragen. + \item Nun werden mittels der diskreten Fourietransformation diese 96 codiert, transformiert. + Das heisst alle Informationen ist in alle Zahlenvorhanden, auch die Fehlerkorrekturstellen Nullzahlen. + \item Nun kommen drei Fehler dazu an den Übertragungsstellen 7, 21 und 75. + Die Fehler können auf den ganzen 96 Übertragungswerten liegen, wie die 75 zeigt. +Zu Beachten ist auch noch, dass der Fehler um das 20- bis 150-Fache kleiner ist.Die Fehlerskala ist rechts. + \item Dieses wird nun Empfangen, man kann keine Fehler erkennen, da diese soviel kleiner sind. + Für das Decodieren wird die Inverse Fourietransformation angewendet, und alle Fehler werden mittransformiert. + \item Nun sieht man die Fehler im decodierten Signal in den Übertragungszahlen. + Von den Übertragungsstellen 64 bis 96 erkennt man, das diese nicht mehr Null sind. + \item Diese Fehlerkorrekturstellen 64 bis 96, dies definieren wir als Syndrom. + In diesem Syndrom ist die Fehlerinformation gespeichert und muss nur noch transformiert werden. + \item Hier sieht man genau wo die Fehler stattgefunden haben. + Leider nicht mehr mit der Qualtiätt der Ursprünglichen Fehler, sie sind nur noch 0.6 oder 0.4 gross. + Obwohl der Fehler um das 20Fache kleiner ist erkennt man im Locator die Fehlerstellen wieder. + \end{enumerate} + Nun haben wir mit Hilfe der Fourietransformation die 3 Fehlerstellen durch das Syndrom lokalisiert, + jetzt gilt es nur noch diese zu korrigieren und wir haben unser originales Signal wieder. \begin{figure} \centering - \resizebox{\textwidth}{!}{ + \resizebox{1.1\textwidth}{!}{ \includegraphics[width=\textwidth]{papers/reedsolomon/figures/plotfft} - %\input{papers/reedsolomon/images/plotfft.tex} + %\input{papers/reedsolomon/tikz/plotfftraw.tex} } \caption{Übertragungsabfolge \ref{reedsolomon:subsection:Übertragungsabfolge}} \label{fig:sendorder} -\end{figure}
\ No newline at end of file +\end{figure} + +Nun zur Definition der Diskrete Fourietransformation, diese ist definiert als + \begin{equation} + \hat{c}_{k} + = \frac{1}{N} \sum_{n=0}^{N-1} + {f}_n \cdot e^{-\frac{2\pi j}{N} \cdot kn}. + ,\label{reedsolomon:DFT} + \end{equation} + Wenn man nun + \begin{equation} + w = + e^{-\frac{2\pi j}{N} k} + \label{reedsolomon:DFT_summand} + \end{equation} + ersetzte, und $N$ konstantbleibt, erhält man + \begin{equation} + \hat{c}_{k}= + \frac{1}{N}( {f}_0 w^0 + {f}_1 w^1 + {f}_2 w^2 + \dots + {f}_{N-1} w^N) + \label{reedsolomon:DFT_polynom} + \end{equation} + was überaust ähnlich zu unserem Polynomidee ist. +Die Polynominterpolation und die Fourietransformation rechnen beide mit reelen Zahlen. +Wenn die Fehlerabweichung sehr sehr klein ist, erkennt man diese irgendwann nicht mehr. +Zusätzlich muss mann immer Grenzen bestimmen auf wieviel Stellen gerechnet wird und wie die Fehler erkannt werden im Locator. +Deshalb haben Mathematiker einen neuen Körper gesucht und ihn in der Endlichkeit gefunden, +dies wird nun im nächsten Abschnitt genauer erklärt. + diff --git a/buch/papers/reedsolomon/figures/plotfft.pdf b/buch/papers/reedsolomon/figures/plotfft.pdf Binary files differindex c5e21e3..80d17d2 100644 --- a/buch/papers/reedsolomon/figures/plotfft.pdf +++ b/buch/papers/reedsolomon/figures/plotfft.pdf diff --git a/buch/papers/reedsolomon/idee.tex b/buch/papers/reedsolomon/idee.tex index 8ad3d27..41e0d4c 100644 --- a/buch/papers/reedsolomon/idee.tex +++ b/buch/papers/reedsolomon/idee.tex @@ -1,8 +1,6 @@ % % idee.tex -- Polynom Idee % -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% \section{Idee \label{reedsolomon:section:idee}} \rhead{Problemstellung} @@ -12,20 +10,20 @@ Doch nur schon um Fehler zu erkennen werden überproportional viele Daten doppel Der Reed-Solomon-Code macht dies auf eine andere, clevere Weise. Das Problem liegt darin Informationen, Zahlen, zu Übertragen und Fehler zu erkennen. -Beim Reed-Solomon-Code kann man nicht nur Fehler erkennen, +Speziell beim Reed-Solomon-Code kann man nicht nur Fehler erkennen, man kann sogar einige Fehler korrigieren. -Der unterschied des Fehler erkennen und korrigiren, ist das beim Erkennen nur die Frage beantwortet wird mit: Ist die Übertragung fehlerhaft oder nicht? -Beim Korrigieren werden Fehler erkennt und dann zusätzlich noch den original Wert rekonstruieren. -Auch eine Variante wäre es die Daten nach einem Fehler nachdem Fehlerhaften senden, nochmals versenden(auch hier wieder doppelt und dreifach Sendung), +Der Unterschied des Fehler erkennen und korrigiren, ist das beim Erkennen nur die Frage beantwortet wird: Ist die Übertragung fehlerhaft oder nicht? +Beim Korrigieren werden Fehler erkannt und dann zusätzlich noch den original Wert rekonstruieren. +Auch eine Variante wäre die Daten nach einer Fehlerhaften sendung, nochmals zum senden auffordern(auch hier wird doppelt und dreifach gesendung), was bei Reed-Solomon-Code-Anwendungen nicht immer sinnvoll ist. -\externaldocument{papers/reedsolomon/anwendungen} -\ref{reedsolomon:section:anwendung} +Anwendungen finden sind im Abchnitt \externaldocument{papers/reedsolomon/anwendungen} +\ref{reedsolomon:section:anwendung} beschrieben. \subsection{Polynom-Ansatz \label{reedsolomon:section:polynomansatz}} \rhead{Polynom-Ansatz} -Eine Idee ist aus den Daten ein Polynom zu bilden. -Diese Polynomfunktion bei bestimmten Werten, ausrechnet und diese Punkte dann überträgt. +Eine Idee ist, aus den Daten ein Polynom zu bilden. +Diese Polynomfunktion bei bestimmten Werten errechnet und diese Punkte dann überträgt. \begin{beispiel} Nehmen wir die Zahlen \textcolor{blue}{2}, \textcolor{blue}{1}, \textcolor{blue}{5}, welche uns dann das Polynom \begin{equation} @@ -43,54 +41,55 @@ mit den Punkten, $p(1),p(2),...,p(7) = (\textcolor{darkgreen}{8}, \textcolor{darkgreen}{41}, \textcolor{darkgreen}{60}, \textcolor{darkgreen}{83}, \textcolor{darkgreen}{110})$ Wenn ein Fehler sich in die Übertragung eingeschlichen hat, muss der Leser/Empfänger diesen erkennen und das Polynom rekonstruieren. -Der Leser/Empfänger weiss, den Grad des Polynoms und dessen Werte übermittelt wurden. +Der Leser/Empfänger weiss, den Grad des Polynoms und dessen \textcolor{darkgreen}{Werte} übermittelt wurden. Die Farbe blau brauchen wir für die \textcolor{blue}{Daten} welche wir mit der Farbe grün \textcolor{darkgreen}{Übermitteln}. \end{beispiel} \begin{beispiel} -Aus der Gleichung \eqref{reedsolomon:equation1}, -ist ein Polynome zweiten Grades durch drei Punkte eindeutig bestimmbar. -Hat es Fehler in der Übertragunge gegeben,(Bei Abbildung \ref{fig:polynom}\textcolor{red}{roten Punkte}) kann man diese erkennen, -da alle Punkte, die korrekt sind, auf dem Polynom liegen müssen. -(Bei Abbildung \ref{fig:polynom}\textcolor{darkgreen}{grünen Punkte}) +Ein Polynome zweiten Grades ist durch drei Punkte eindeutig bestimmbar. +Hat es Fehler in der Übertragunge gegeben,in der Abbilbung \ref{fig:polynom} die \textcolor{red}{roten Punkte}). +Erkennt man diese Fehler, da alle korrekten Punkte auf der Parabel liegen müssen. +Die \textcolor{darkgreen}{grünen Punkte} bestimmen die Parabel, und die Fehler können zu den +\textcolor{gray}{Orginalpunkte} rekonstruiert werden. Ab wie vielen Fehler ist das Polynom nicht mehr erkennbar beim Übertragen von 7 Punkten? Bei 2 Fehlern kann man noch eindeutig bestimmen, dass das Polynom mit 4 Punkten, -gegenüber dem mit 5 Punkten falsch liegt.\ref{fig:polynom} -Werden es mehr Fehler kann nur erkennt werden, dass das Polynom nicht stimmt. +gegenüber dem mit 5 Punkten falsch liegt. \ref{fig:polynom} +Werden es mehr Fehler kann nur erkannt werden, dass das Polynom nicht stimmt. Das orginale Polynom kann aber nicht mehr gefunden werden. -Da das Konkurenzpolynom, grau gestrichelt in Abbildung \ref{fig:polynom}, das orginal fehlleited. -Um das Konkurenzpolynom auszuschliessen, währen mehr \textcolor{darkgreen}{Übertragungspunkte} nötig. +Da andere Polynome oder das Konkurrenzpolynom, grau gestrichelt in Abbildung \ref{fig:polynom}, das orginal fehlleitet. +Um das Konkurrenzpolynom auszuschliessen, währen mehr \textcolor{darkgreen}{Übertragungspunkte} nötig. \end{beispiel} -\begin{figure} +\begin{figure}%[!ht] \centering - \includegraphics[width=\textwidth]{papers/reedsolomon/figures/polynom2} - %\input{papers/reedsolomon/tikz/polynom2.tex} + %\includegraphics[width=\textwidth]{papers/reedsolomon/figures/polynom2} + \input{papers/reedsolomon/tikz/polynomraw.tex} \caption{Polynom $p(x)$ von der Gleichung\eqref{reedsolomon:equation1}} \label{fig:polynom} \end{figure} \section{Fehlerkorekturstellen bestimmen \label{reedsolomon:section:Fehlerkorrekturstellen}} -Um zu bestimmen wieviel zusätzliche \textcolor{darkgreen}{Übertragungspunkte} notwendig sind, die dann Fehler korrigieren, -muss man zuerst Wissen wieviel \textcolor{blue}{Daten} gesendet und wieviel \textcolor{red}{Fehler} erkennt werden sollen. +Um zu bestimmen wieviel zusätzliche \textcolor{darkgreen}{Übertragungspunkte} notwendig sind, um die Fehler zu korrigieren, +muss man zuerst wissen, wieviel \textcolor{blue}{Daten} gesendet und wieviel \textcolor{red}{Fehler} erkennt werden sollen. Die Anzahl \textcolor{blue}{Daten} (ab hier verwenden wir das Wort Nutzlast), die als Polynomkoeffizente $k$ übergeben werden, -brauchen die gleiche Anzahl an Polynomgraden, beginnend bei Grad 0 somit ergibt sich der Polynomgrad mit $k-1$. +brauchen die gleiche Anzahl an Polynomkoeffizententräger, beginnend bei Grad 0 somit ergibt sich der Polynomgrad mit $k-1$. Für die Anzahl der Fehler $t$, welche korrigiert werden können, gehen wir zum Beispiel. -\begin{beispiel} von den Polynom \ref{reedsolomon:equation1} in, welchem wir 7 \textcolor{darkgreen}{Übertragungspunkte} senden. -Durch 3 Punkte wird das Polyom eindeutig bestimmt, nun haben wir mehrere Konkurenzpolynome, doch mit maximal 2 Fehler liegen auf einem Konkurenzpolynom, -maximal 4 Punkte und auf unserem orginal 5 Punkte. Ansonsten hatt es mehr Fehler oder unser Konkurenzpolynom ist das gleiche wie das Original. +\begin{beispiel} von den Polynom \ref{reedsolomon:equation1} in, welchem wir \textcolor{darkgreen}{7 Übertragungspunkte} senden. +Durch 3 Punkte wird das Polyom eindeutig bestimmt, nun haben wir mehrere Konkurrenzpolynome, doch mit maximal 2 Fehler liegen auf einem Konkurrenzpolynom, +maximal 4 Punkte und auf unserem orginal 5 Punkte. Ansonsten hatt es mehr Fehler oder unser Konkurrenzpolynom ist das gleiche wie das Original. Somit können wir nun bestimmen, dass von den \textcolor{darkgreen}{7 Übertragungspunkten$u$} bis zu 2 Fehler korrigiert werden können und 4 Übertragungspunkte zusätzlich gesendet werden müssen. \end{beispiel} -Durch das erkennen des Schemas in der Tabelle\ref{tabel:fehlerkorrekturstellen} +Man könnte auch dies in der Tabelle \ref{tab:fehlerkorrekturstellen} erkennen, doch mit dieser Gleichung \begin{equation} \frac{\textcolor{darkgreen}{u}-\textcolor{blue}{k}}{\textcolor{red}{t}} =2 \label{reedsolomon:equation2} \end{equation} -zeigt sich das es $k+2t$ Übertragungspunkte braucht. +zeigt sich, dass es $k+2t$ Übertragungspunkte braucht. -\begin{center} +\begin{table} + \centering \begin{tabular}{ c c | c} \hline Nutzlas & Fehler & Übertragen \\ @@ -102,11 +101,11 @@ zeigt sich das es $k+2t$ Übertragungspunkte braucht. $k$ & $t$ & $k+2t$ Werte eines Polynoms vom Grad $k-1$ \\ \hline \end{tabular} - Fehlerkorrekturstellen Bestimmung TODO: Tabellenreferenz - \label{tabel:fehlerkorrekturstellen} -\end{center} + \caption{ Fehlerkorrekturstellen Bestimmung.} + \label{tab:fehlerkorrekturstellen} +\end{table} -Ein Nebeneffekt ist das dadurch auch $2t$ Fehler erkannt werden können, nicht aber korrigiert. -Um aus den Übertragenen Zahlen wieder die Nutzlastzahlen zu bekommen könnte man eine Polynominterpolation anwenden, -doch die Punkte mit Polynominterpolation zu einem Polynom zu rekonstruieren ist schwierig und Fehleranfällig. +Ein Nebeneffekt ist, dass dadurch auch $2t$ Fehler erkannt werden können, nicht aber korrigiert. +Um aus den übertragenen Zahlen wieder die Nutzlastzahlen zu bekommen könnte man eine Polynominterpolation anwenden, +doch die Punkte mit Polynominterpolation zu einem Polynom zu rekonstruieren ist schwierig und fehleranfällig. diff --git a/buch/papers/reedsolomon/standalone/standalone.pdf b/buch/papers/reedsolomon/standalone/standalone.pdf Binary files differindex 1f2f0b9..4a44333 100644 --- a/buch/papers/reedsolomon/standalone/standalone.pdf +++ b/buch/papers/reedsolomon/standalone/standalone.pdf diff --git a/buch/papers/reedsolomon/tikz/plotfft.tex b/buch/papers/reedsolomon/tikz/plotfft.tex index 14af683..bb74dfb 100644 --- a/buch/papers/reedsolomon/tikz/plotfft.tex +++ b/buch/papers/reedsolomon/tikz/plotfft.tex @@ -69,9 +69,9 @@ %FFT & IFFT deskription \draw[thin,gray,dashed] (0,9) to (0,-9); - \node(IFFT) [scale=0.8] at (0,9.3) {IFFT}; + \node(IFFT) [scale=0.9] at (0,9.3) {IFFT}; \draw[stealth-](IFFT.south west)--(IFFT.south east); - \node(FFT) [scale=0.8, above of=IFFT] {FFT}; + \node(FFT) [scale=0.9, above of=IFFT] {FFT}; \draw[-stealth](FFT.north west)--(FFT.north east); \draw[thick, ->,] (codiert)++(-1,0) +(0.05,0.5) -- +(-0.1,-0.1) -- +(0.1,0.1) -- +(0,-0.5); diff --git a/buch/papers/reedsolomon/tikz/plotfftraw.tex b/buch/papers/reedsolomon/tikz/plotfftraw.tex new file mode 100644 index 0000000..141d2ce --- /dev/null +++ b/buch/papers/reedsolomon/tikz/plotfftraw.tex @@ -0,0 +1,80 @@ +\begin{tikzpicture}[] + + %--------------------------------------------------------------- + %Knote + \matrix(m) [draw = none, column sep=25mm, row sep=2mm]{ + + \node(signal) [] { + \begin{tikzpicture} + \begin{axis} + [title = {\Large {Signal}}, + xtick={0,20,40,64,80,98}] + \addplot[blue] table[col sep=comma] {tikz/signal.txt}; + \end{axis} + \end{tikzpicture}}; & + + \node(codiert) [] { + \begin{tikzpicture}[] + \begin{axis}[ title = {\Large {Codiert \space + \space Fehler}}, + xtick={0,40,60,100}, axis y line*=left] + \addplot[green] table[col sep=comma] {tikz/codiert.txt}; + \end{axis} + \begin{axis}[xtick={7,21,75}, axis y line*=right] + \addplot[red] table[col sep=comma] {tikz/fehler.txt}; + \end{axis} + \end{tikzpicture}}; \\ + + \node(decodiert) [] { + \begin{tikzpicture} + \begin{axis}[title = {\Large {Decodiert}}] + \addplot[blue] table[col sep=comma] {tikz/decodiert.txt}; + \end{axis} + \end{tikzpicture}}; & + + \node(empfangen) [] { + \begin{tikzpicture} + \begin{axis}[title = {\Large {Empfangen}}] + \addplot[green] table[col sep=comma] {tikz/empfangen.txt}; + \end{axis} + \end{tikzpicture}};\\ + + \node(syndrom) [] { + \begin{tikzpicture} + \begin{axis}[title = {\Large {Syndrom}}] + \addplot[black] table[col sep=comma] {tikz/syndrom.txt}; + \end{axis} + \end{tikzpicture}}; & + + \node(locator) [] { + \begin{tikzpicture} + \begin{axis}[title = {\Large {Locator}}] + \addplot[gray] table[col sep=comma] {tikz/locator.txt}; + \end{axis} + \end{tikzpicture}};\\ + }; + %------------------------------------------------------------- + %FFT & IFFT deskription + + \draw[thin,gray,dashed] (0,9) to (0,-9); + \node(IFFT) [scale=0.9] at (0,9.3) {IFFT}; + \draw[stealth-](IFFT.south west)--(IFFT.south east); + \node(FFT) [scale=0.9, above of=IFFT] {FFT}; + \draw[-stealth](FFT.north west)--(FFT.north east); + + \draw[thick, ->,] (codiert)++(-1,0) +(0.05,0.5) -- +(-0.1,-0.1) -- +(0.1,0.1) -- +(0,-0.5); + %Arrows + \draw[thick, ->] (signal.east) to (codiert.west); + \draw[thick, ->] (codiert.south) to (empfangen.north); + \draw[thick, ->] (empfangen.west) to (decodiert.east); + \draw[thick, ->] (syndrom.east) to (locator.west); + \draw[thick](decodiert.south east)++(-1.8,1) ellipse (1.3cm and 0.8cm) ++(-1.3,0) coordinate(zoom) ; + \draw[thick, ->] (zoom) to[out=180, in=90] (syndrom.north); + + %item + \node[circle, draw, fill =lightgray] at (signal.north west) {1}; + \node[circle, draw, fill =lightgray] at (codiert.north west) {2+3}; + \node[circle, draw, fill =lightgray] at (empfangen.north west) {4}; + \node[circle, draw, fill =lightgray] at (decodiert.north west) {5}; + \node[circle, draw, fill =lightgray] at (syndrom.north west) {6}; + \node[circle, draw, fill =lightgray] at (locator.north west) {7}; +\end{tikzpicture}
\ No newline at end of file diff --git a/buch/papers/reedsolomon/tikz/polynom2.tex b/buch/papers/reedsolomon/tikz/polynom2.tex index 47dc679..80557fb 100644 --- a/buch/papers/reedsolomon/tikz/polynom2.tex +++ b/buch/papers/reedsolomon/tikz/polynom2.tex @@ -14,7 +14,7 @@ %////////////////////////////////////// -\begin{tikzpicture}[>=latex,thick] +\begin{tikzpicture}[>=latex,thick,] \draw[color=blue, line width=1.4pt] plot[domain=0:8, samples=100] ({\x},{(2*\x^2+1*\x+5)/\teiler}); diff --git a/buch/papers/reedsolomon/tikz/polynomraw.tex b/buch/papers/reedsolomon/tikz/polynomraw.tex new file mode 100644 index 0000000..02968fd --- /dev/null +++ b/buch/papers/reedsolomon/tikz/polynomraw.tex @@ -0,0 +1,50 @@ +% polynomraw + +\newcommand{\teiler}{40} + + +%////////////////////////////////////// + +\begin{tikzpicture}[>=latex,thick,] + \draw[color=blue, line width=1.4pt] + plot[domain=0:8, samples=100] + ({\x},{(2*\x^2+1*\x+5)/\teiler}); + + \draw[->] (-0.2,0) -- (8,0) coordinate[label={$x$}]; + \draw[->] (0,-0.2) -- (0,150/\teiler) coordinate[label={right:$p(x)$}]; + + \def\punkt#1{ + \fill[color=green] #1 circle[radius=0.08]; + \draw #1 circle[radius=0.07]; + } + + \def\hellpunkt#1{ + \fill[color=lightgray] #1 circle[radius=0.08]; + \draw[gray] #1 circle[ radius=0.07]; + } + + \draw[color=gray,line width=1pt,dashed] + plot[domain=0.5:7, samples=100] + ({\x},{(7.832*\x^2-51.5*\x+121.668)/\teiler}); + + + \punkt{(1,8/\teiler)} + \hellpunkt{(2,15/\teiler)} + \hellpunkt{(3,26/\teiler)} + \punkt{(4,41/\teiler)} + \punkt{(5,60/\teiler)} + \punkt{(6,83/\teiler)} + \punkt{(7,110/\teiler)} + + + + \def\erpunkt#1{ + \fill[color=red] #1 circle[radius=0.08]; + \draw #1 circle[radius=0.07]; + } + \erpunkt{(2,50/\teiler)} + \erpunkt{(3,37.66/\teiler)} + + \draw(0,100/\teiler) -- (-0.1,100/\teiler) coordinate[label={left:$100$}]; + \draw(1,0) -- (1,-0.1) coordinate[label={below:$1$}]; +\end{tikzpicture}
\ No newline at end of file |