aboutsummaryrefslogtreecommitdiffstats
path: root/vorlesungen/slides/10/taylor.tex
diff options
context:
space:
mode:
Diffstat (limited to 'vorlesungen/slides/10/taylor.tex')
-rw-r--r--vorlesungen/slides/10/taylor.tex176
1 files changed, 98 insertions, 78 deletions
diff --git a/vorlesungen/slides/10/taylor.tex b/vorlesungen/slides/10/taylor.tex
index 920470f..25745f5 100644
--- a/vorlesungen/slides/10/taylor.tex
+++ b/vorlesungen/slides/10/taylor.tex
@@ -10,12 +10,19 @@
\begin{frame}[t]
\setlength{\abovedisplayskip}{5pt}
\setlength{\belowdisplayskip}{5pt}
- \frametitle{Beispiel $\sin x$}
+ \frametitle{Beispiel $\sin(x)$}
\vspace{-20pt}
- %\onslide<+->
- \begin{block}{Taylor-Approximationen von $\sin x$}
+ \begin{block}{Taylor-Approximationen von $\sin(x)$}
\begin{align*}
- p_n(x)
+ p_{
+ \only<1>{0}
+ \only<2>{1}
+ \only<3>{2}
+ \only<4>{3}
+ \only<5>{4}
+ \only<6>{5}
+ \only<7->{n}
+ }(x)
&=
\uncover<1->{0}
\uncover<2->{+ x}
@@ -74,121 +81,134 @@
\end{center}
\end{frame}
-
\begin{frame}[t]
-\setlength{\abovedisplayskip}{5pt}
-\setlength{\belowdisplayskip}{5pt}
-\frametitle{Taylor-Reihen}
-\vspace{-20pt}
-\onslide<+->
- \begin{block}{Polynom-Approximationen von $f(t)$}
- \vspace{-15pt}
- \begin{align*}
- p_n(t)
- &=
- f(0)
- + f'(0) t
- + f''(0)\frac{t^2}{2}
- + f^{(3)}(0)\frac{t^3}{3!}
- + \ldots
- + f^{(n)}(0) \frac{t^n}{n!}
- =
- \sum_{k=0}^{n} f^{(k)} \frac{t^k}{k!}
- \end{align*}
- \end{block}
- \begin{block}{Die ersten $n$ Ableitungen von $f(0)$ und $p_n(0)$ sind gleich!}
- \vspace{-15pt}
+ \setlength{\abovedisplayskip}{5pt}
+ \setlength{\belowdisplayskip}{5pt}
+ \frametitle{Taylor-Reihen}
+ \vspace{-20pt}
+ \begin{block}{Polynom-Approximationen von $f(t)$}
+ \begin{align*}
+ p_n(t)
+ &=
+ f(0)
+ \uncover<2->{ + f' (0) t }
+ \uncover<3->{ + f''(0)\frac{t^2}{2} }
+ \uncover<4->{ + \ldots + f^{(n)}(0) \frac{t^n}{n!} }
+ \uncover<5->{ = \sum_{k=0}^{n} f^{(k)} \frac{t^k}{k!} }
+ \end{align*}
+ \end{block}
+ \uncover<6->{
+ \begin{block}{Erste $n$ Ableitungen von $f(0)$ und $p_n(0)$ sind gleich!}}
\begin{align*}
- p'_n(t)
- &=
- f'(0)
- + f''(0)t
- + f^{(3)}(0) \frac{t^2}{2!}
- + \mathcal O(t^3)
- &\Rightarrow&&
- p'_n(0) = f'(0)
+ \uncover<6->{ p'_n(t) }
+ &
+ \uncover<7->{
+ = f'(0)
+ + f''(0)t
+ + \mathcal O(t^2)
+ }
+ &\uncover<8->{\Rightarrow}&&
+ \uncover<8->{p'_n(0) = f'(0)}
\\
- p''_n(0)
- &=
- f''(0) + f^{(3)}(0)t + \ldots + f^{(n)}(0) \frac{t^{n-2}}{(n-2)!}
- &\Rightarrow&&
- p''_n(0) = f''(0)
- \end{align*}
- \end{block}
- \begin{block}{Für unendlich lange Polynome stimmen alle Ableitungen überein!}
- \vspace{-15pt}
- \begin{align*}
- \lim_{n\to \infty} p_n(t)
- =
- f(t)
+ \uncover<9->{ p''_n(t) }
+ &
+ \uncover<10->{
+ = f''(0)
+ + \mathcal O(t)
+ }
+ &\uncover<11->{\Rightarrow}&&
+ \uncover<11->{ p''_n(0) = f''(0) }
\end{align*}
\end{block}
+ \uncover<12->{
+ \begin{block}{Für alle praktisch relevanten Funktionen $f(t)$ gilt:}
+ \begin{align*}
+ \lim_{n\to \infty} p_n(t)
+ =
+ f(t)
+ \end{align*}
+ \end{block}
+ }
\end{frame}
\begin{frame}[t]
\setlength{\abovedisplayskip}{5pt}
\setlength{\belowdisplayskip}{5pt}
- \frametitle{Beispiel $\exp x$}
- \vspace{-20pt}
- %\onslide<+->
- \begin{block}{Taylor-Approximationen von $\exp x$}
+% \frametitle{Beispiel $e^t$}
+% \vspace{-20pt}
+ \begin{block}{Taylor-Approximationen von $e^{at}$}
\begin{align*}
- p_n(x)
- =
+ p_{
+ \only<1>{0}
+ \only<2>{1}
+ \only<3>{2}
+ \only<4>{3}
+ \only<5>{4}
+ \only<6>{5}
+ \only<7->{n}
+ }(t)
+ &=
1
- \uncover<1->{+ x}
- \uncover<2->{+ \frac{x^2}{2}}
- \uncover<3->{+ \frac{x^3}{3!}}
- \uncover<4->{+ \frac{x^4}{4!}}
- \uncover<5->{+ \frac{x^5}{5!}}
- \uncover<6->{+ \frac{x^6}{6!}}
- \uncover<7->{+ \ldots
- = \sum_{k=0}^{n} \frac{x^k}{k!}}
+ \uncover<2->{+ a t}
+ \uncover<3->{+ a^2 \frac{t^2}{2}}
+ \uncover<4->{+ a^3 \frac{t^3}{3!}}
+ \uncover<5->{+ a^4 \frac{t^4}{4!}}
+ \uncover<6->{+ a^5 \frac{t^5}{5!}}
+ \uncover<7->{+ a^6 \frac{t^6}{6!}}
+ \uncover<8->{+ \ldots
+ = \sum_{k=0}^{n} a^k \frac{t^k}{k!}}
+ \\
+ &
+ \uncover<9->{= \exp(at)}
\end{align*}
\end{block}
\begin{center}
\begin{tikzpicture}[>=latex,thick,scale=1.3]
- \draw[->] (-4.0, 0.0) -- (4.0,0.0) coordinate[label=$x$];
+ \draw[->] (-4.0, 0.0) -- (4.0,0.0) coordinate[label=$t$];
\draw[->] ( 0.0,-0.5) -- (0.0,2.5);
\clip (-3,-0.5) rectangle (3,2.5);
\draw[domain=-4:1, samples=50, smooth, blue]
plot ({\x}, {exp(\x)})
- node[above right] {$\exp(x)$};
+ node[above right] {$\exp(t)$};
\uncover<1>{
- \draw[domain=-4:1.5, samples=10, smooth, red]
- plot ({\x}, {1 + \x})
- node[below right] {$p_1(x)$};}
+ \draw[domain=-4:4, samples=12, smooth, red]
+ plot ({\x}, {1})
+ node[below right] {$p_0(t)$};}
\uncover<2>{
+ \draw[domain=-4:1.5, samples=10, smooth, red]
+ plot ({\x}, {1 + \x})
+ node[below right] {$p_1(t)$};}
+ \uncover<3>{
\draw[domain=-4:1, samples=50, smooth, red]
plot ({\x}, {1 + \x + \x*\x/2})
- node[below right] {$p_2(x)$};}
- \uncover<3>{
+ node[below right] {$p_2(t)$};}
+ \uncover<4>{
\draw[domain=-4:1, samples=50, smooth, red]
plot ({\x}, {1 + \x + \x*\x/2 + \x*\x*\x/6})
- node[below right] {$p_3(x)$};}
- \uncover<4>{
+ node[below right] {$p_3(t)$};}
+ \uncover<5>{
\draw[domain=-4:0.9, samples=50, smooth, red]
plot ({\x}, {1 + \x + \x*\x/2 + \x*\x*\x/6 + \x*\x*\x*\x/24})
- node[below left] {$p_4(x)$};}
- \uncover<5>{
+ node[below left] {$p_4(t)$};}
+ \uncover<6>{
\draw[domain=-4:0.9, samples=50, smooth, red]
plot ({\x}, {1 + \x + \x*\x/2 + \x*\x*\x/6 + \x*\x*\x*\x/24
+ \x*\x*\x*\x*\x/120})
- node[below left] {$p_5(x)$};}
- \uncover<6>{
+ node[below left] {$p_5(t)$};}
+ \uncover<7>{
\draw[domain=-4:0.9, samples=50, smooth, red]
plot ({\x}, {1 + \x + \x*\x/2 + \x*\x*\x/6 + \x*\x*\x*\x/24
+ \x*\x*\x*\x*\x/120
+ \x*\x*\x*\x*\x*\x/720})
- node[below left] {$p_6(x)$};}
- \uncover<7>{
+ node[below left] {$p_6(t)$};}
+ \uncover<8->{
\draw[domain=-4:0.9, samples=50, smooth, red]
plot ({\x}, {1 + \x + \x*\x/2 + \x*\x*\x/6 + \x*\x*\x*\x/24
+ \x*\x*\x*\x*\x/120
+ \x*\x*\x*\x*\x*\x/720
+ \x*\x*\x*\x*\x*\x*\x/5040})
- node[below left] {$p_7(x)$};}
+ node[below left] {$p_7(t)$};}
\end{tikzpicture}
\end{center}
\end{frame}