diff options
Diffstat (limited to 'vorlesungen/slides/6/punktgruppen')
-rw-r--r-- | vorlesungen/slides/6/punktgruppen/c.tex | 6 | ||||
-rw-r--r-- | vorlesungen/slides/6/punktgruppen/chemie.tex | 14 | ||||
-rw-r--r-- | vorlesungen/slides/6/punktgruppen/d.tex | 9 | ||||
-rw-r--r-- | vorlesungen/slides/6/punktgruppen/p.tex | 8 | ||||
-rw-r--r-- | vorlesungen/slides/6/punktgruppen/semidirekt.tex | 22 |
5 files changed, 38 insertions, 21 deletions
diff --git a/vorlesungen/slides/6/punktgruppen/c.tex b/vorlesungen/slides/6/punktgruppen/c.tex index 5394f51..80790b1 100644 --- a/vorlesungen/slides/6/punktgruppen/c.tex +++ b/vorlesungen/slides/6/punktgruppen/c.tex @@ -21,6 +21,7 @@ \end{block} \end{column} \begin{column}{0.33\textwidth} +\uncover<2->{% \begin{block}{$C_{nv}$} \begin{center} \includegraphics[width=\textwidth]{../slides/6/punktgruppen/images/cnv.jpg} @@ -29,9 +30,10 @@ \item Eine $n$-zählige Achse \item $n$ dazu senkrechte Symmetrieebenen \end{itemize} -\end{block} +\end{block}} \end{column} \begin{column}{0.33\textwidth} +\uncover<3->{% \begin{block}{$C_{nh}$} \begin{center} \includegraphics[width=\textwidth]{../slides/6/punktgruppen/images/cnh.jpg} @@ -40,7 +42,7 @@ \item Eine $n$-zählige Achse \item Eine dazu senkrechte Spiegelebene \end{itemize} -\end{block} +\end{block}} \end{column} \end{columns} \end{frame} diff --git a/vorlesungen/slides/6/punktgruppen/chemie.tex b/vorlesungen/slides/6/punktgruppen/chemie.tex index 43e8dc4..7f8b7a8 100644 --- a/vorlesungen/slides/6/punktgruppen/chemie.tex +++ b/vorlesungen/slides/6/punktgruppen/chemie.tex @@ -7,7 +7,7 @@ \begin{frame}[t] \setlength{\abovedisplayskip}{5pt} \setlength{\belowdisplayskip}{5pt} -\frametitle{Anwendung} +\frametitle{Anwendung: Energieniveaus eines Atoms} \vspace{-20pt} \begin{columns}[t,onlytextwidth] \begin{column}{0.48\textwidth} @@ -23,6 +23,7 @@ E\Psi \] $V(x)$ = Potential der Atomkerne eines Molekuls \end{block} +\uncover<2->{% \begin{block}{Symmetrien} $g\in\operatorname{O}(3)$ wirkt auf $V$ und $\Psi$ \begin{align*} @@ -31,9 +32,10 @@ $g\in\operatorname{O}(3)$ wirkt auf $V$ und $\Psi$ (g\cdot \Psi)(x) &= \Psi(g\cdot x) \end{align*} Symmetrie von $V$: $g\cdot V=V$ -\end{block} +\end{block}} \end{column} \begin{column}{0.48\textwidth} +\uncover<3->{% \begin{block}{Lösungen} Eigenfunktionen $\Psi$ zum Eigenwert $E$ \[ @@ -43,16 +45,18 @@ g\cdot \Psi \text{ Lösung} \] mit gleichem Eigenwert! -\end{block} +\end{block}} +\uncover<4->{% \begin{block}{Eigenräume} Die Symmetriegruppe $G\subset \operatorname{O}(3)$ eines Moleküls operiert auf dem Eigenraum -\end{block} +\end{block}} +\uncover<5->{% \begin{block}{Externe Felder} Externe Felder zerstören die Symmetrie $\Rightarrow$ die Energieniveaus/Spektrallinien spalten sich auf -\end{block} +\end{block}} \end{column} \end{columns} \end{frame} diff --git a/vorlesungen/slides/6/punktgruppen/d.tex b/vorlesungen/slides/6/punktgruppen/d.tex index a4824b5..9dd0a7a 100644 --- a/vorlesungen/slides/6/punktgruppen/d.tex +++ b/vorlesungen/slides/6/punktgruppen/d.tex @@ -15,6 +15,7 @@ \begin{center} \includegraphics[width=\textwidth]{../slides/6/punktgruppen/images/dn.jpg} \end{center} +\vspace{-8pt} \begin{itemize} \item $C_n$ Achse \item $n$ $C_2$ Achse senkrecht dazu @@ -22,26 +23,30 @@ \end{block} \end{column} \begin{column}{0.33\textwidth} +\uncover<2->{% \begin{block}{$D_{nd}$} \begin{center} \includegraphics[width=\textwidth]{../slides/6/punktgruppen/images/dnd.jpg} \end{center} +\vspace{-8pt} \begin{itemize} \item $D_n$ Achse \item $n$ winkelhalbierende Spiegelebenen der $C_2$-Achsen \end{itemize} -\end{block} +\end{block}} \end{column} \begin{column}{0.33\textwidth} +\uncover<3->{% \begin{block}{$D_{nh}$} \begin{center} \includegraphics[width=\textwidth]{../slides/6/punktgruppen/images/dnh.jpg} \end{center} +\vspace{-8pt} \begin{itemize} \item $D_n$ Achse \item Spiegelbene senkrecht dazu \end{itemize} -\end{block} +\end{block}} \end{column} \end{columns} \end{frame} diff --git a/vorlesungen/slides/6/punktgruppen/p.tex b/vorlesungen/slides/6/punktgruppen/p.tex index 908e76a..ea51e93 100644 --- a/vorlesungen/slides/6/punktgruppen/p.tex +++ b/vorlesungen/slides/6/punktgruppen/p.tex @@ -7,7 +7,7 @@ \begin{frame}[t] \setlength{\abovedisplayskip}{5pt} \setlength{\belowdisplayskip}{5pt} -\frametitle{Drehgruppen} +\frametitle{Platonische Körper} \vspace{-20pt} \begin{columns}[t,onlytextwidth] \begin{column}{0.33\textwidth} @@ -18,18 +18,20 @@ \end{block} \end{column} \begin{column}{0.33\textwidth} +\uncover<2->{% \begin{block}{$O = O_h \cap \operatorname{SO(3)}$} \begin{center} \includegraphics[width=0.8\textwidth]{../slides/6/punktgruppen/toi/O.jpg} \end{center} -\end{block} +\end{block}} \end{column} \begin{column}{0.33\textwidth} +\uncover<3->{% \begin{block}{$I = I_h \cap \operatorname{SO(3)}$} \begin{center} \includegraphics[width=0.8\textwidth]{../slides/6/punktgruppen/toi/I.jpg} \end{center} -\end{block} +\end{block}} \end{column} \end{columns} \end{frame} diff --git a/vorlesungen/slides/6/punktgruppen/semidirekt.tex b/vorlesungen/slides/6/punktgruppen/semidirekt.tex index b8636be..69c1173 100644 --- a/vorlesungen/slides/6/punktgruppen/semidirekt.tex +++ b/vorlesungen/slides/6/punktgruppen/semidirekt.tex @@ -23,53 +23,57 @@ G\ltimes A \] heisst {\em semidirektes Produkt}. \begin{itemize} -\item +\item<2-> Neutrales Element: $(e,0)$ -\item +\item<3-> Gruppenoperation \[ (h_1,a_1)\cdot(h_2,a_2) = (h_1h_2, a_1 + \vartheta(h_1)a_2) \] -\item +\item<4-> Inverse: $(h,a)^{-1} = (h^{-1},-\vartheta(h)^{-1}a) $ +\uncover<5->{% Kontrolle: \begin{align*} &\phantom{\mathstrut=\mathstrut} (h,a)\cdot (h^{-1},-\vartheta(h)^{-1}a) \\ -&=(hh^{-1},a-\vartheta(h)\vartheta(h)^{-1}a) -=(e,0) -\end{align*} +&\uncover<6->{=(hh^{-1},a-\vartheta(h)\vartheta(h)^{-1}a)} +\uncover<7->{=(e,0)} +\end{align*}} \end{itemize} \end{block} \end{column} \begin{column}{0.48\textwidth} +\uncover<8->{% \begin{block}{Drehungen und Spiegelungen von $\mathbb{R}^2$} Spiegelung: $C_2$ Drehungen der: $\operatorname{SO}(2)$ Drehungen und Spiegelungen: $C_2\ltimes \operatorname{SO}(2)=O(2)$ -\end{block} +\end{block}} +\uncover<9->{% \begin{block}{Drehungen und Translationen} Drehungen: $H=\operatorname{SO}(2)$ \\ Translationen: $A=\mathbb{R}^2$ \\ Bewegungen der Ebene: $\operatorname{SO}(2)\ltimes \mathbb{R}^2$ -\end{block} +\end{block}} +\uncover<10->{% \begin{block}{Dopplereffekt und Laufzeit} Dopplereffekt: $\mathbb{R}^+$ (Skalierung) \\ Laufzeit: $\mathbb{R}$ (Verschiebung) \\ Skalierung und Verschiebung: $\mathbb{R}^+\ltimes \mathbb{R}$ -\end{block} +\end{block}} \end{column} \end{columns} \end{frame} |