aboutsummaryrefslogtreecommitdiffstats
path: root/vorlesungen/slides
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--vorlesungen/slides/5/Makefile.inc2
-rw-r--r--vorlesungen/slides/5/chapter.tex2
-rw-r--r--vorlesungen/slides/5/normalbeispiel.tex108
-rw-r--r--vorlesungen/slides/5/normalbeispiel34.tex80
-rw-r--r--vorlesungen/slides/5/swbeweis.tex56
-rw-r--r--vorlesungen/slides/test.tex4
6 files changed, 250 insertions, 2 deletions
diff --git a/vorlesungen/slides/5/Makefile.inc b/vorlesungen/slides/5/Makefile.inc
index bea2feb..5b849ec 100644
--- a/vorlesungen/slides/5/Makefile.inc
+++ b/vorlesungen/slides/5/Makefile.inc
@@ -29,6 +29,8 @@ chapter5 = \
\
../slides/5/spektrum.tex \
../slides/5/normal.tex \
+ ../slides/5/normalbeispiel.tex \
+ ../slides/5/normalbeispiel34.tex \
../slides/5/unitaer.tex \
\
../slides/5/konvergenzradius.tex \
diff --git a/vorlesungen/slides/5/chapter.tex b/vorlesungen/slides/5/chapter.tex
index 314269d..cdf2ea5 100644
--- a/vorlesungen/slides/5/chapter.tex
+++ b/vorlesungen/slides/5/chapter.tex
@@ -37,4 +37,6 @@
\folie{5/hyperbolisch.tex}
\folie{5/spektrum.tex}
\folie{5/normal.tex}
+\folie{5/normalbeispiel.tex}
+\folie{5/normalbeispiel34.tex}
\folie{5/approximation.tex}
diff --git a/vorlesungen/slides/5/normalbeispiel.tex b/vorlesungen/slides/5/normalbeispiel.tex
new file mode 100644
index 0000000..e130c15
--- /dev/null
+++ b/vorlesungen/slides/5/normalbeispiel.tex
@@ -0,0 +1,108 @@
+%
+% normalbeispiel.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\definecolor{darkred}{rgb}{0.8,0,0}
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Beispiele für normale Matrizen}
+\vspace{-15pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.49\textwidth}
+\uncover<3->{%
+\begin{block}{Symmetrisch und Antisymmetrisch}
+$A\in M_n(\mathbb{C})$
+\begin{align*}
+A&=\pm A^t &&\Rightarrow &AA^* &=A\overline{A^t} =\pm A\overline{A}
+\\
+ & && & &=\pm\overline{A}A =\overline{A^t}A
+\\
+ & && & &=A^*A
+\end{align*}
+\end{block}}
+\end{column}
+\begin{column}{0.49\textwidth}
+\uncover<4->{%
+\begin{block}{Orthogonal}
+$A\in M_n(\mathbb{R})\;\Rightarrow\; A^*=A^t$
+\begin{align*}
+AA^t&=I &&\Rightarrow& AA^*&=AA^t=I\\
+ & && & &=A^tA=A^*A
+\end{align*}
+\end{block}}
+\end{column}
+\end{columns}
+\vspace{-15pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.49\textwidth}
+\uncover<1->{%
+\begin{block}{Hermitesch und Antihermitesch}
+$A\in M_n(\mathbb{C})$
+\begin{align*}
+A&=\pm A^* &&\Rightarrow &AA^* &=\pm A^2=A^*A
+\end{align*}
+\end{block}}
+\end{column}
+\begin{column}{0.49\textwidth}
+\uncover<2->{%
+\begin{block}{Unitär}
+$A\in M_n(\mathbb{C})$
+\begin{align*}
+AA^*&=I &&\Rightarrow& AA^*=I=A^*A
+\end{align*}
+\end{block}}
+\end{column}
+\end{columns}
+%\uncover<5->{%
+%\begin{block}{Weitere}
+%$N\in M_n(\mathbb{C})$ nilpotent, $N^k=0$\uncover<11->{
+%$\Rightarrow$
+%normal für $l=k-l\Rightarrow l=\frac{k}{2}$}
+%\uncover<6->{%
+%\[
+%\left.
+%\begin{aligned}
+%A &=N^l+(N^t)^{k-l}
+%\\
+%A^t&=(N^t)^l+N^{k-1}
+%\end{aligned}
+%\right\}
+%\uncover<7->{%
+%\Rightarrow
+%\left\{
+%\begin{aligned}
+%\mathstrut
+%A^t A
+%&\only<8>{=
+%((N^t)^l+N^{k-l}) (N^l+(N^t)^{k-l})}
+%\uncover<9->{=
+%{\color<10>{darkgreen}(N^t)^lN^l}
+%\only<9>{+
+%{\color{orange}(N^t)^k}}
+%+
+%{\color<10>{darkred}N^{k-l}(N^t)^{k-l}}
+%\only<9>{+
+%{\color{orange}N^k}}}
+%\\
+%\mathstrut
+%A A^t
+%&\only<8>{=
+%(N^l+(N^t)^{k-l})((N^t)^l+N^{k-l})}
+%\uncover<9->{=
+%{\color<10>{darkred}N^l(N^t)^l}
+%+
+%\only<9>{{\color{orange}N^k}
+%+
+%{\color{orange}(N^t)^k}
+%+}
+%{\color<10>{darkgreen}(N^t)^{k-l}N^{k-l}}}
+%\end{aligned}
+%\right.}
+%\hspace{20cm}
+%\]}
+%\end{block}}
+\end{frame}
diff --git a/vorlesungen/slides/5/normalbeispiel34.tex b/vorlesungen/slides/5/normalbeispiel34.tex
new file mode 100644
index 0000000..f2647b0
--- /dev/null
+++ b/vorlesungen/slides/5/normalbeispiel34.tex
@@ -0,0 +1,80 @@
+%
+% normalbeispiel34.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+\definecolor{darkred}{rgb}{0.8,0,0}
+\begin{frame}[t]
+\frametitle{Beispiele normaler Matrizen für $n=3$}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.49\textwidth}
+\begin{align*}
+A
+&=
+\begin{pmatrix}
+\alpha&\beta & 0 \\
+ 0 &\alpha&\beta \\
+\beta & 0 &\alpha
+\end{pmatrix},
+\;
+A^t=
+\begin{pmatrix}
+\alpha& 0 &\beta \\
+\beta &\alpha& 0 \\
+ 0 &\beta &\alpha
+\end{pmatrix}
+&
+\uncover<2->{%
+&\Rightarrow\left\{
+\begin{aligned}
+AA^t&=\begin{pmatrix}
+\alpha^2+\beta^2 & \alpha\beta & \alpha\beta \\
+\alpha\beta & \alpha^2+\beta^2 & \alpha\beta \\
+\alpha\beta & \alpha\beta & \alpha^2+\beta^2
+\end{pmatrix}
+\\
+&\phantom{ooooooooooooooo}\|
+\\
+A^tA&=\begin{pmatrix}
+\alpha^2+\beta^2 & \alpha\beta & \alpha\beta \\
+\alpha\beta & \alpha^2+\beta^2 & \alpha\beta \\
+\alpha\beta & \alpha\beta & \alpha^2+\beta^2
+\end{pmatrix}
+\end{aligned}\right.}
+\\
+\uncover<3->{
+A&=\alpha I + \beta O}\uncover<4->{, O=\begin{pmatrix}0&1&0\\0&0&1\\1&0&0\end{pmatrix}\in \operatorname{O}(3)}
+&
+\uncover<5->{
+&\Rightarrow
+\left\{
+\begin{aligned}
+AA^*&= \alpha^2I^2 + \beta^2
+\ifthenelse{\boolean{presentation}}{ \only<6->{I} }{} \only<-5>{OO^*}
++ \alpha\beta(O+O^*)\\
+A^*A&= \alpha^2I^2 + \beta^2
+\ifthenelse{\boolean{presentation}}{ \only<6->{I} }{} \only<-5>{O^*O}
++ \alpha\beta(O^*+O)
+\end{aligned}
+\right.}
+\\
+\uncover<7->{A&=U+V^*,\text{normal}}\uncover<10->{\text{, }
+{\color{darkgreen}UV}={\color{darkgreen}VU}}
+&
+&\uncover<8->{\Rightarrow
+\left\{
+\begin{aligned}
+AA^* &= UU^* + {\color<9->{darkgreen}UV} + {\color<9->{darkred}V^*U^*} + V^*V
+\\
+A^*A &= U^*U + {\color<9->{darkred}U^*V^*} + {\color<9->{darkgreen}VU} + VV^*
+\end{aligned}
+\right.}
+\end{align*}
+\end{column}
+\begin{column}{0.49\textwidth}
+\end{column}
+\end{columns}
+\end{frame}
diff --git a/vorlesungen/slides/5/swbeweis.tex b/vorlesungen/slides/5/swbeweis.tex
new file mode 100644
index 0000000..927322b
--- /dev/null
+++ b/vorlesungen/slides/5/swbeweis.tex
@@ -0,0 +1,56 @@
+%
+% swbeweis.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Beweisidee Stone-Weierstrass}
+\vspace{-15pt}
+\begin{columns}[t]
+\begin{column}{0.5\textwidth}
+\begin{enumerate}
+\item<1->
+$\exists$ eine monoton wachsende Folge von Polynomen $u_n(t)\to \sqrt{t}$
+gleichmässig auf $[0,1]\subset{\color{darkgreen}\mathbb{R}}$
+\item<2->
+$f\in A$, dann kann man $|f| = \sqrt{f^2}$ beliebig genau approximieren
+durch Funktionen
+in $A$
+\item<3->
+$f,g\in A$, dann kann
+\begin{align*}
+\max(a,b)&={\textstyle\frac12}(f+g+|f-g|)\\
+\min(a,b)&={\textstyle\frac12}(f+g-|f-g|)
+\end{align*}
+in $A$ beliebig genau approximiert werden.
+\end{enumerate}
+\end{column}
+\begin{column}{0.5\textwidth}
+\begin{enumerate}
+\setcounter{enumi}{3}
+\item<4->
+Für $x,y\in D$ und $\alpha,\beta\in\mathbb{R}$ gibt es $f\in A$ mit
+$f(x)=\alpha$ und $f(y)=\beta$
+\item<5->
+Zu
+$f\colon D\to\mathbb{R}$ stetig und $x\in D$ gibt es $g\in A$ mit $g(x)=f(x)$
+und $g(y) \le f(y)+\varepsilon$ für $y\ne x$
+\item<6->
+Für $f$ gibt es endlich viele Approximationen $g_i$ mit Punkten $x_i$
+wie in Schritt~4.
+Dann ist $\max_i g_i$ eine Approximation von $f$, die beliebig genau in
+$A$ approximiert werden kann.
+\end{enumerate}
+\end{column}
+\end{columns}
+
+\vspace{10pt}
+\uncover<7->{%
+Schritt~2 braucht in {\color{red}$\mathbb{C}$} die komplex Konjugierte:
+$|f|^2=f\overline{f}$}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/test.tex b/vorlesungen/slides/test.tex
index 90138a1..d079a05 100644
--- a/vorlesungen/slides/test.tex
+++ b/vorlesungen/slides/test.tex
@@ -5,7 +5,7 @@
%
%\folie{5/verzerrung.tex}
%\folie{5/plan.tex}
-\folie{5/planbeispiele.tex}
+%\folie{5/planbeispiele.tex}
%\folie{5/approximation.tex}
% XXX Visualisierung Cayley-Hamilton-Produkte
@@ -18,4 +18,4 @@
% XXX polynome auf dem spektrum
% XXX Motiviation für *-Operation
%\folie{5/normal.tex}
-
+\folie{5/normalbeispiel34.tex}