diff options
Diffstat (limited to 'vorlesungen/slides')
150 files changed, 6109 insertions, 99 deletions
diff --git a/vorlesungen/slides/10/ableitung-exp.tex b/vorlesungen/slides/10/ableitung-exp.tex new file mode 100644 index 0000000..10ce191 --- /dev/null +++ b/vorlesungen/slides/10/ableitung-exp.tex @@ -0,0 +1,60 @@ +% +% ableitung-exp.tex -- Ableitung von exp(x) +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% Erstellt durch Roy Seitz +% +% !TeX spellcheck = de_CH +\bgroup +\begin{frame}[t] + \setlength{\abovedisplayskip}{5pt} + \setlength{\belowdisplayskip}{5pt} + %\frametitle{Ableitung von $\exp(x)$} + %\vspace{-20pt} + \begin{columns}[t,onlytextwidth] + \begin{column}{0.48\textwidth} + \begin{block}{Ableitung von $\exp(at)$} + \begin{align*} + \frac{d}{dt} \exp(at) + &= + \frac{d}{dt} \sum_{k=0}^{\infty} a^k \frac{t^k}{k!} + \\ + &\uncover<2->{ + = \sum_{k=0}^{\infty} a^k\frac{kt^{k-1}}{k(k-1)!} + } + \\ + &\uncover<3->{ + = a \sum_{k=1}^{\infty} + a^{k-1}\frac{t^{k-1}}{(k-1)!} + } + \\ + &\uncover<4->{ + = a \exp(at) + } + \end{align*} + \end{block} + \end{column} + \begin{column}{0.48\textwidth} + \uncover<5->{ + \begin{block}{Ableitung von $\exp(At)$} + \begin{align*} + \frac{d}{dt} \exp(At) + &= + \frac{d}{dt} \sum_{k=0}^{\infty} A^k \frac{t^k}{k!} + \\ + &= + \sum_{k=0}^{\infty} A^k\frac{kt^{k-1}}{k(k-1)!} + \\ + &= + A \sum_{k=1}^{\infty} A^{k-1}\frac{t^{k-1}}{(k-1)!} + \\ + &= + A \exp(At) + \end{align*} + \end{block} + } + \end{column} + \end{columns} +\end{frame} + +\egroup diff --git a/vorlesungen/slides/10/intro.tex b/vorlesungen/slides/10/intro.tex new file mode 100644 index 0000000..276bf49 --- /dev/null +++ b/vorlesungen/slides/10/intro.tex @@ -0,0 +1,45 @@ +% +% intro.tex -- Repetition Lie-Gruppen und -Algebren +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% Erstellt durch Roy Seitz +% +% !TeX spellcheck = de_CH +\bgroup + + + +\begin{frame}[t] + \setlength{\abovedisplayskip}{5pt} + \setlength{\belowdisplayskip}{5pt} +% \frametitle{Repetition} +% \vspace{-20pt} + \begin{block}{Offene Fragen} + \begin{itemize}[<+->] + \item Woher kommt die Exponentialfunktion? + \begin{fleqn} + \[ + \exp(At) + = + 1 + + At + + A^2\frac{t^2}{2} + + A^3\frac{t^3}{3!} + + \ldots + \] + \end{fleqn} + \item Wie löst man eine Matrix-DGL? + \begin{fleqn} + \[ + \dot\gamma(t) = A\gamma(t), + \qquad + \gamma(t) \in G \subset M_n + \] + \end{fleqn} + \item Lie-Gruppen und Lie-Algebren + \item Was bedeutet $\exp(At)$? + \end{itemize} + \end{block} +\end{frame} + +\egroup diff --git a/vorlesungen/slides/10/matrix-dgl.tex b/vorlesungen/slides/10/matrix-dgl.tex new file mode 100644 index 0000000..ae68fb1 --- /dev/null +++ b/vorlesungen/slides/10/matrix-dgl.tex @@ -0,0 +1,83 @@ +% +% matrix-dgl.tex -- Matrix-Differentialgleichungen +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% Erstellt durch Roy Seitz +% +% !TeX spellcheck = de_CH +\bgroup + +\begin{frame}[t] + \setlength{\abovedisplayskip}{5pt} + \setlength{\belowdisplayskip}{5pt} + \frametitle{1.~Ordnung mit Skalaren} + \vspace{-20pt} + \begin{columns}[t,onlytextwidth] + \begin{column}{0.48\textwidth} + \begin{block}{Aufgabe} + Sei $a, x(t), x_0 \in \mathbb R$, + \[ + \dot x(t) = ax(t), + \quad + x(0) = x_0 + \] + \end{block} + \begin{block}{Potenzreihen-Ansatz} + Sei $a_k \in \mathbb R$, + \[ + x(t) = a_0 + a_1t + a_2t^2 + a_3t^3 \ldots + \] + \end{block} + \end{column} + \begin{column}{0.48\textwidth} + \begin{block}{Lösung} + Einsetzen in DGL, Koeffizientenvergleich liefert + \[ x(t) = \exp(at) \, x_0, \] + wobei + \begin{align*} + \exp(at) + &= 1 + at + \frac{a^2t^2}{2} + \frac{a^3t^3}{3!} + \ldots \\ + &{\color{gray}(= e^{at}.)} + \end{align*} + \end{block} + \end{column} + \end{columns} +\end{frame} + +\begin{frame}[t] + \setlength{\abovedisplayskip}{5pt} + \setlength{\belowdisplayskip}{5pt} + \frametitle{1.~Ordnung mit Matrizen} + \vspace{-20pt} + \begin{columns}[t,onlytextwidth] + \begin{column}{0.48\textwidth} + \begin{block}{Aufgabe} + Sei $A \in M_n$, $x(t), x_0 \in \mathbb R^n$, + \[ + \dot x(t) = Ax(t), + \quad + x(0) = x_0 + \] + \end{block} + \begin{block}{Potenzreihen-Ansatz} + Sei $A_k \in \mathbb M_n$, + \[ + x(t) = A_0 + A_1t + A_2t^2 + A_3t^3 \ldots + \] + \end{block} + \end{column} + \begin{column}{0.48\textwidth} + \begin{block}{Lösung} + Einsetzen in DGL, Koeffizientenvergleich liefert + \[ x(t) = \exp(At) \, x_0, \] + wobei + \[ + \exp(At) + = 1 + At + \frac{A^2t^2}{2} + \frac{A^3t^3}{3!} + \ldots + \] + \end{block} + \end{column} + \end{columns} +\end{frame} + +\egroup diff --git a/vorlesungen/slides/10/n-zu-1.tex b/vorlesungen/slides/10/n-zu-1.tex new file mode 100644 index 0000000..09475ad --- /dev/null +++ b/vorlesungen/slides/10/n-zu-1.tex @@ -0,0 +1,63 @@ +% +% n-zu-1.tex -- Umwandlend einer DGL n-ter Ordnung in ein System 1. Ordnung +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% Erstellt durch Roy Seitz +% +% !TeX spellcheck = de_CH +\bgroup +\begin{frame}[t] + \setlength{\abovedisplayskip}{5pt} + \setlength{\belowdisplayskip}{5pt} + %\frametitle{Reicht $1.$ Ordnung?} + %\vspace{-20pt} + \begin{columns}[t,onlytextwidth] + \begin{column}{0.48\textwidth} + \uncover<1->{ + \begin{block}{Beispiel: DGL 3.~Ordnung} \vspace*{-1ex} + \begin{align*} + x^{(3)} + a_2 \ddot x + a_1 \dot x + a_0 x = 0 \\ + \Rightarrow + x^{(3)} = -a_2 \ddot x - a_1 \dot x - a_0 x + \end{align*} + \end{block} + } + \uncover<2->{ + \begin{block}{Ziel: Nur noch 1.~Ableitungen} + Einführen neuer Variablen: + \begin{align*} + x_0 &\coloneqq x & + x_1 &\coloneqq \dot x & + x_2 &\coloneqq \ddot x + \end{align*} + System von Gleichungen 1.~Ordnung + \begin{align*} + \dot x_0 &= x_1 \\ + \dot x_1 &= x_2 \\ + \dot x_2 &= -a_2 x_2 - a_1 x_1 - a_0 x_0 + \end{align*} + \end{block} + } + \end{column} + \uncover<3->{ + \begin{column}{0.48\textwidth} + \begin{block}{Als Vektor-Gleichung} \vspace*{-1ex} + \begin{align*} + \frac{d}{dt} + \begin{pmatrix} x_0 \\ x_1 \\ x_2 \end{pmatrix} + = \begin{pmatrix} + 0 & 1 & 0 \\ + 0 & 0 & 1 \\ + -a_0 & -a_1 & -a_2 + \end{pmatrix} + \begin{pmatrix} x_0 \\ x_1 \\ x_2 \end{pmatrix} + \end{align*} + + \uncover<4->{Geht für jede lineare Differentialgleichung!} + + \end{block} + \end{column} + } + \end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/10/potenzreihenmethode.tex b/vorlesungen/slides/10/potenzreihenmethode.tex new file mode 100644 index 0000000..1715134 --- /dev/null +++ b/vorlesungen/slides/10/potenzreihenmethode.tex @@ -0,0 +1,91 @@ +% +% potenzreihenmethode.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% Bearbeitet durch Roy Seitz +% +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Potenzreihenmethode} +\vspace{-15pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Lineare Differentialgleichung} +\begin{align*} +x'&=ax&&\Rightarrow&x'-ax&=0 +\\ +x(0)&=C +\end{align*} +\end{block} +\end{column} +\begin{column}{0.48\textwidth} +\uncover<2->{% +\begin{block}{Potenzreihenansatz} +\begin{align*} +x(t) +&= +a_0+ a_1t + a_2t^2 + \dots +\\ +x(0)&=a_0=C +\end{align*} +\end{block}} +\end{column} +\end{columns} +\uncover<3->{% +\begin{block}{Lösung} +\[ +\arraycolsep=1.4pt +\begin{array}{rcrcrcrcrcr} +\uncover<3->{ x'(t)} + \uncover<5->{ + &=&\phantom{(} a_1\phantom{\mathstrut-aa_0)} + &+& 2a_2\phantom{\mathstrut-aa_1)}t + &+& 3a_3\phantom{\mathstrut-aa_2)}t^2 + &+& 4a_4\phantom{\mathstrut-aa_3)}t^3 + &+& \dots}\\ +\uncover<3->{-ax(t)} + \uncover<6->{ + &=&\mathstrut-aa_0 \phantom{)} + &-& aa_1\phantom{)}t + &-& aa_2\phantom{)}t^2 + &-& aa_3\phantom{)}t^3 + &-& \dots}\\[2pt] +\hline +\\[-10pt] +\uncover<3->{0} + \uncover<7->{ + &=&(a_1-aa_0) + &+& (2a_2-aa_1)t + &+& (3a_3-aa_2)t^2 + &+& (4a_4-aa_3)t^3 + &+& \dots}\\ +\end{array} +\] +\begin{align*} +\uncover<4->{ +a_0&=C}\uncover<8->{, +\quad +a_1=aa_0=aC}\uncover<9->{, +\quad +a_2=\frac12a^2C}\uncover<10->{, +\quad +a_3=\frac16a^3C}\uncover<11->{, +\ldots, +a_k=\frac1{k!}a^kC} +\hspace{3cm} +\\ +\uncover<4->{ +\Rightarrow x(t) &= C}\uncover<8->{+Cat}\uncover<9->{ + C\frac12(at)^2} +\uncover<10->{ + C \frac16(at)^3} +\uncover<11->{ + \dots+C\frac{1}{k!}(at)^k+\dots} +\ifthenelse{\boolean{presentation}}{ +\only<12>{ += +C\sum_{k=0}^\infty \frac{(at)^k}{k!}} +}{} +\uncover<13->{= +C\exp(at)} +\end{align*} +\end{block}} +\end{frame} diff --git a/vorlesungen/slides/10/repetition.tex b/vorlesungen/slides/10/repetition.tex new file mode 100644 index 0000000..7c007ca --- /dev/null +++ b/vorlesungen/slides/10/repetition.tex @@ -0,0 +1,119 @@ +% +% repetition.tex -- Repetition Lie-Gruppen und -Algebren +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% Erstellt durch Roy Seitz +% +% !TeX spellcheck = de_CH +\bgroup + +\begin{frame}[t] + \setlength{\abovedisplayskip}{5pt} + \setlength{\belowdisplayskip}{5pt} + \frametitle{Repetition} + \vspace{-20pt} + \begin{columns}[t,onlytextwidth] + \begin{column}{0.48\textwidth} + \uncover<1->{ + \begin{block}{Lie-Gruppe} + Kontinuierliche Matrix-Gruppe $G$ mit bestimmter Eigenschaft + \end{block} + } + \uncover<3->{ + \begin{block}{Ein-Parameter-Untergruppe} + Darstellung der Lie-Gruppe $G$: + \[ + \gamma \colon \mathbb R \to G + : \quad + t \mapsto \gamma(t), + \] + so dass + \[ \gamma(s + t) = \gamma(t) \gamma(s). \] + \end{block} + } + \end{column} + \begin{column}{0.48\textwidth} + \uncover<2->{ + \begin{block}{Beispiel} + Volumen-erhaltende Abbildungen: + \[ \gSL2R= \{A \in M_2 \,|\, \det(A) = 1\} .\] + \begin{align*} + \uncover<4->{ \gamma_x(t) } + & + \uncover<4->{= \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} } + \\ + \uncover<5->{ \gamma_y(t) } + & + \uncover<5->{= \begin{pmatrix} 1 & 0 \\ t & 1 \end{pmatrix} } + \\ + \uncover<6->{ \gamma_h(t)} + & + \uncover<6->{= \begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix} } + \end{align*} + \end{block} + } + \end{column} + \end{columns} +\end{frame} + + +\begin{frame}[t] + \setlength{\abovedisplayskip}{5pt} + \setlength{\belowdisplayskip}{5pt} + \frametitle{Repetition} + \vspace{-20pt} + \begin{columns}[t,onlytextwidth] + \begin{column}{0.48\textwidth} + \uncover<1->{ + \begin{block}{Lie-Algebra aus Lie-Gruppe} + Ableitungen der Ein-Parameter-Untergruppen: + \begin{align*} + G &\to \mathcal A \\ + \gamma &\mapsto \dot\gamma(0) + \end{align*} + \uncover<3->{ + Lie-Klammer als Produkt: + \[ [A, B] = AB - BA \in \mathcal A \] + } + \end{block} + } + \uncover<7->{\vspace*{-4ex} + \begin{block}{Lie-Gruppe aus Lie-Algebra} + Lösung der Differentialgleichung: + \[ + \dot\gamma(t) = A\gamma(t) + \quad \text{mit} \quad + A = \dot\gamma(0) + \] + \[ + \Rightarrow \gamma(t) = \exp(At) + \] + \end{block} + } + \end{column} + \begin{column}{0.48\textwidth} + \uncover<2->{ + \begin{block}{Beispiel} + Lie-Algebra von \gSL2R: + \[ \asl2R = \{ A \in M_2 \,|\, \Spur(A) = 0 \} \] + \end{block} + } + \begin{align*} + \uncover<4->{ X(t) } + & + \uncover<4->{= \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} } + \\ + \uncover<5->{ Y(t) } + & + \uncover<5->{= \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} } + \\ + \uncover<6->{ H(t) } + & + \uncover<6->{= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} } + \end{align*} + + \end{column} + \end{columns} +\end{frame} + +\egroup diff --git a/vorlesungen/slides/10/so2.tex b/vorlesungen/slides/10/so2.tex new file mode 100644 index 0000000..dcbcdc8 --- /dev/null +++ b/vorlesungen/slides/10/so2.tex @@ -0,0 +1,141 @@ +% +% so2.tex -- Illustration of so(2) -> SO(2) +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% Erstellt durch Roy Seitz +% +% !TeX spellcheck = de_CH +\bgroup + +\begin{frame}[t] + \setlength{\abovedisplayskip}{5pt} + \setlength{\belowdisplayskip}{5pt} + \frametitle{Von der Lie-Gruppe zur -Algebra} + \vspace{-20pt} + \begin{columns}[t,onlytextwidth] + \begin{column}{0.48\textwidth} + \uncover<1->{ + \begin{block}{Lie-Gruppe} + Darstellung von \gSO2: + \begin{align*} + \mathbb R + &\to + \gSO2 + \\ + t + &\mapsto + \begin{pmatrix} + \cos t & -\sin t \\ + \sin t & \phantom-\cos t + \end{pmatrix} + \end{align*} + \end{block} + } + \uncover<2->{ + \begin{block}{Ableitung am neutralen Element} + \begin{align*} + \frac{d}{d t} + & + \left. + \begin{pmatrix} + \cos t & -\sin t \\ + \sin t & \phantom-\cos t + \end{pmatrix} + \right|_{ t = 0} + \\ + = + & + \begin{pmatrix} -\sin0 & -\cos0 \\ \phantom-\cos0 & -\sin0 \end{pmatrix} + = + \begin{pmatrix} 0 & -1 \\ 1 & \phantom-0 \end{pmatrix} + \end{align*} + \end{block} + } + \end{column} + \begin{column}{0.48\textwidth} + \uncover<3->{ + \begin{block}{Lie-Algebra} + Darstellung von \aso2: + \begin{align*} + \mathbb R + &\to + \aso2 + \\ + t + &\mapsto + \begin{pmatrix} + 0 & -t \\ + t & \phantom-0 + \end{pmatrix} + \end{align*} + \end{block} + } + \end{column} + \end{columns} +\end{frame} + + +\begin{frame}[t] + \setlength{\abovedisplayskip}{5pt} + \setlength{\belowdisplayskip}{5pt} + \frametitle{Von der Lie-Algebra zur -Gruppe} + \vspace{-20pt} + \begin{columns}[t,onlytextwidth] + \begin{column}{0.48\textwidth} + \uncover<1->{ + \begin{block}{Differentialgleichung} + Gegeben: + \[ + J + = + \dot\gamma(0) = \begin{pmatrix} 0 & -1 \\ 1 & \phantom-0 \end{pmatrix} + \] + Gesucht: + \[ \dot \gamma (t) = J \gamma(t) \qquad \gamma \in \gSO2 \] + \[ \Rightarrow \gamma(t) = \exp(Jt) \gamma(0) = \exp(Jt) \] + \end{block} + } + \end{column} + \begin{column}{0.48\textwidth} + \uncover<2->{ + \begin{block}{Lie-Algebra} + Potenzen von $J$: + \begin{align*} + J^2 &= -I & + J^3 &= -J & + J^4 &= I & + \ldots + \end{align*} + \end{block} + } + \end{column} + \end{columns} +\uncover<3->{ + Folglich: + \begin{align*} + \exp(Jt) + &= I + Jt + + J^2\frac{t^2}{2!} + + J^3\frac{t^3}{3!} + + J^4\frac{t^4}{4!} + + J^5\frac{t^5}{5!} + + \ldots \\ + &= \begin{pmatrix} + \vspace*{3pt} + 1 - \frac{t^2}{2} + \frac{t^4}{4!} - \ldots + & + -t + \frac{t^3}{3!} - \frac{t^5}{5!} + \ldots + \\ + t - \frac{t^3}{3!} + \frac{t^5}{5!} - \ldots + & + 1 - \frac{t^2}{2!} + \frac{t^4}{4!} - \ldots + \end{pmatrix} + = + \begin{pmatrix} + \cos t & -\sin t \\ + \sin t & \phantom-\cos t + \end{pmatrix} + \end{align*} + } +\end{frame} +\egroup diff --git a/vorlesungen/slides/10/taylor.tex b/vorlesungen/slides/10/taylor.tex new file mode 100644 index 0000000..8c71965 --- /dev/null +++ b/vorlesungen/slides/10/taylor.tex @@ -0,0 +1,216 @@ +% +% taylor.tex -- Repetition Taylot-Reihen +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% Erstellt durch Roy Seitz +% +% !TeX spellcheck = de_CH +\bgroup + +\begin{frame}[t] + \setlength{\abovedisplayskip}{5pt} + \setlength{\belowdisplayskip}{5pt} + \frametitle{Beispiel $\sin(x)$} + \ifthenelse{\boolean{presentation}}{\vspace{-20pt}}{\vspace{-8pt}} + \begin{block}{Taylor-Approximationen von $\sin(x)$} + \begin{align*} + p_{ + \only<1>{0} + \only<2>{1} + \only<3>{2} + \only<4>{3} + \only<5>{4} + \only<6>{5} + \only<7->{n} + }(x) + &= + \uncover<1->{0} + \uncover<2->{+ x} + \uncover<3->{+ 0 \frac{x^2}{2!}} + \uncover<4->{- 1 \frac{x^3}{3!}} + \uncover<5->{+ 0 \frac{x^4}{4!}} + \uncover<6->{+ 1 \frac{x^5}{5!}} + \uncover<7->{+ \ldots} + \uncover<8->{ + = \sum_{k=0}^{n/2} (-1)^{2k + 1}\frac{x^{2k+1}}{(2k+1)!} + } + \end{align*} + \end{block} + \begin{center} + \begin{tikzpicture}[>=latex,thick,scale=1.3] + \draw[->] (-5.0, 0.0) -- (5.0,0.0) coordinate[label=$x$]; + \draw[->] ( 0.0,-1.5) -- (0.0,1.5); + \clip (-5,-1.5) rectangle (5,1.5); + \draw[domain=-4:4, samples=50, smooth, blue] + plot ({\x}, {sin(180/3.1415968*\x)}) + node[above right] {$\sin(x)$}; + \uncover<1|handout:0>{ + \draw[domain=-4:4, samples=2, smooth, red] + plot ({\x}, {0}) + node[above right] {$p_0(x)$};} + \uncover<2|handout:0>{ + \draw[domain=-1.5:1.5, samples=2, smooth, red] + plot ({\x}, {\x}) + node[below right] {$p_1(x)$};} + \uncover<3|handout:0>{ + \draw[domain=-1.5:1.5, samples=2, smooth, red] + plot ({\x}, {\x}) + node[below right] {$p_2(x)$};} + \uncover<4>{ + \draw[domain=-3:3, samples=50, smooth, red] + plot ({\x}, {\x - \x*\x*\x/6}) + node[above right] {$p_3(x)$};} + \uncover<5|handout:0>{ + \draw[domain=-3:3, samples=50, smooth, red] + plot ({\x}, {\x - \x*\x*\x/6}) + node[above right] {$p_4(x)$};} + \uncover<6|handout:0>{ + \draw[domain=-3.9:3.9, samples=50, smooth, red] + plot ({\x}, {\x - \x*\x*\x/6 + \x*\x*\x*\x*\x/120}) + node[below right] {$p_5(x)$};} + \uncover<7|handout:0>{ + \draw[domain=-3.9:3.9, samples=50, smooth, red] + plot ({\x}, {\x - \x*\x*\x/6 + \x*\x*\x*\x*\x/120}) + node[below right] {$p_6(x)$};} + \uncover<8-|handout:0>{ + \draw[domain=-4:4, samples=50, smooth, red] + plot ({\x}, {\x - \x*\x*\x/6 + \x*\x*\x*\x*\x/120 - + \x*\x*\x*\x*\x*\x*\x/5040}) + node[above right] {$p_7(x)$};} + \end{tikzpicture} + \end{center} +\end{frame} + +\begin{frame}[t] + \setlength{\abovedisplayskip}{5pt} + \setlength{\belowdisplayskip}{5pt} + \frametitle{Taylor-Reihen} + \ifthenelse{\boolean{presentation}}{\vspace{-20pt}}{\vspace{-8pt}} + \begin{block}{Polynom-Approximationen von $f(t)$} + \begin{align*} + p_n(t) + &= + f(0) + \uncover<2->{ + f' (0) t } + \uncover<3->{ + f''(0)\frac{t^2}{2} } + \uncover<4->{ + \ldots + f^{(n)}(0) \frac{t^n}{n!} } + \uncover<5->{ = \sum_{k=0}^{n} f^{(k)} \frac{t^k}{k!} } + \end{align*} + \end{block} + \uncover<6->{ + \begin{block}{Erste $n$ Ableitungen von $f(0)$ und $p_n(0)$ sind gleich!}} + \begin{align*} + \uncover<6->{ p'_n(t) } + & + \uncover<7->{ + = f'(0) + + f''(0)t + + \mathcal O(t^2) + } + &\uncover<8->{\Rightarrow}&& + \uncover<8->{p'_n(0) = f'(0)} + \\ + \uncover<9->{ p''_n(t) } + & + \uncover<10->{ + = f''(0) + + \mathcal O(t) + } + &\uncover<11->{\Rightarrow}&& + \uncover<11->{ p''_n(0) = f''(0) } + \end{align*} + \end{block} + \uncover<12->{ + \begin{block}{Für alle praktisch relevanten Funktionen $f(t)$ gilt:} + \begin{align*} + \lim_{n\to \infty} p_n(t) + = + f(t) + \end{align*} + \end{block} + } +\end{frame} + + +\begin{frame}[t] + \setlength{\abovedisplayskip}{5pt} + \setlength{\belowdisplayskip}{5pt} + \frametitle{Beispiel $e^t$} + \ifthenelse{\boolean{presentation}}{\vspace{-20pt}}{\vspace{-8pt}} + \begin{block}{Taylor-Approximationen von $e^{at}$} + \begin{align*} + p_{ + \only<1>{0} + \only<2>{1} + \only<3>{2} + \only<4>{3} + \only<5>{4} + \only<6>{5} + \only<7->{n} + }(t) + &= + 1 + \uncover<2->{+ a t} + \uncover<3->{+ a^2 \frac{t^2}{2}} + \uncover<4->{+ a^3 \frac{t^3}{3!}} + \uncover<5->{+ a^4 \frac{t^4}{4!}} + \uncover<6->{+ a^5 \frac{t^5}{5!}} + \uncover<7->{+ a^6 \frac{t^6}{6!}} + \uncover<8->{+ \ldots + = \sum_{k=0}^{n} a^k \frac{t^k}{k!}} + \\ + & + \uncover<9->{= \exp(at)} + \end{align*} + \end{block} + \begin{center} + \begin{tikzpicture}[>=latex,thick,scale=1.3] + \draw[->] (-4.0, 0.0) -- (4.0,0.0) coordinate[label=$t$]; + \draw[->] ( 0.0,-0.5) -- (0.0,2.5); + \clip (-3,-0.5) rectangle (3,2.5); + \draw[domain=-4:1, samples=50, smooth, blue] + plot ({\x}, {exp(\x)}) + node[above right] {$\exp(t)$}; + \uncover<1|handout:0>{ + \draw[domain=-4:4, samples=12, smooth, red] + plot ({\x}, {1}) + node[below right] {$p_0(t)$};} + \uncover<2|handout:0>{ + \draw[domain=-4:1.5, samples=10, smooth, red] + plot ({\x}, {1 + \x}) + node[below right] {$p_1(t)$};} + \uncover<3|handout:0>{ + \draw[domain=-4:1, samples=50, smooth, red] + plot ({\x}, {1 + \x + \x*\x/2}) + node[below right] {$p_2(t)$};} + \uncover<4>{ + \draw[domain=-4:1, samples=50, smooth, red] + plot ({\x}, {1 + \x + \x*\x/2 + \x*\x*\x/6}) + node[below right] {$p_3(t)$};} + \uncover<5|handout:0>{ + \draw[domain=-4:0.9, samples=50, smooth, red] + plot ({\x}, {1 + \x + \x*\x/2 + \x*\x*\x/6 + \x*\x*\x*\x/24}) + node[below left] {$p_4(t)$};} + \uncover<6|handout:0>{ + \draw[domain=-4:0.9, samples=50, smooth, red] + plot ({\x}, {1 + \x + \x*\x/2 + \x*\x*\x/6 + \x*\x*\x*\x/24 + + \x*\x*\x*\x*\x/120}) + node[below left] {$p_5(t)$};} + \uncover<7|handout:0>{ + \draw[domain=-4:0.9, samples=50, smooth, red] + plot ({\x}, {1 + \x + \x*\x/2 + \x*\x*\x/6 + \x*\x*\x*\x/24 + + \x*\x*\x*\x*\x/120 + + \x*\x*\x*\x*\x*\x/720}) + node[below left] {$p_6(t)$};} + \uncover<8-|handout:0>{ + \draw[domain=-4:0.9, samples=50, smooth, red] + plot ({\x}, {1 + \x + \x*\x/2 + \x*\x*\x/6 + \x*\x*\x*\x/24 + + \x*\x*\x*\x*\x/120 + + \x*\x*\x*\x*\x*\x/720 + + \x*\x*\x*\x*\x*\x*\x/5040}) + node[below left] {$p_7(t)$};} + \end{tikzpicture} + \end{center} +\end{frame} + +\egroup diff --git a/vorlesungen/slides/10/template.tex b/vorlesungen/slides/10/template.tex new file mode 100644 index 0000000..50f0a3b --- /dev/null +++ b/vorlesungen/slides/10/template.tex @@ -0,0 +1,21 @@ +% +% template.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% Erstellt durch Roy Seitz +% +% !TeX spellcheck = de_CH +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Template} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\end{column} +\begin{column}{0.48\textwidth} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/10/vektorfelder.mp b/vorlesungen/slides/10/vektorfelder.mp new file mode 100644 index 0000000..e63b2d5 --- /dev/null +++ b/vorlesungen/slides/10/vektorfelder.mp @@ -0,0 +1,361 @@ +% +% Stroemungsfelder linearer Differentialgleichungen +% +% (c) 2015 Prof Dr Andreas Mueller, Hochschule Rapperswil +% 2021-04-14, Roy Seitz, Copied for SeminarMatrizen +% +verbatimtex +\documentclass{book} +\usepackage{times} +\usepackage{amsmath} +\usepackage{amssymb} +\usepackage{amsfonts} +\usepackage{txfonts} +\begin{document} +etex; + +input TEX; + +TEXPRE("%&latex" & char(10) & +"\documentclass{book}" & +"\usepackage{times}" & +"\usepackage{amsmath}" & +"\usepackage{amssymb}" & +"\usepackage{amsfonts}" & +"\usepackage{txfonts}" & +"\begin{document}"); +TEXPOST("\end{document}"); + +% +% Vektorfeld in der Ebene mit Lösungskurve +% so(2) +% +beginfig(1) + +% Scaling parameter +numeric unit; +unit := 150; + +% Some points +z1 = (-1.5, 0) * unit; +z2 = ( 1.5, 0) * unit; +z3 = ( 0, -1.5) * unit; +z4 = ( 0, 1.5) * unit; + +pickup pencircle scaled 1pt; +drawarrow (z1 shifted (-10,0))--(z2 shifted (10,0)); +drawarrow (z3 shifted (0,-10))--(z4 shifted (0,10)); +label.top(btex $x_1$ etex, z2 shifted (10,0)); +label.rt(btex $x_2$ etex, z4 shifted (0,10)); + +% % Draw circles +% for x = 0.2 step 0.2 until 1.4: +% path p; +% p = (x,0); +% for a = 5 step 5 until 355: +% p := p--(x*cosd(a), x*sind(a)); +% endfor; +% p := p--cycle; +% pickup pencircle scaled 1pt; +% draw p scaled unit withcolor red; +% endfor; + +% Define DGL +def dglField(expr x, y) = + %(-0.5 * (x + y), -0.5 * (y - x)) + (-y, x) +enddef; + +pair A; +A := (1, 0); +draw A scaled unit withpen pencircle scaled 8bp withcolor red; + +% Draw arrows for each grid point +pickup pencircle scaled 0.5pt; +for x = -1.5 step 0.1 until 1.55: + for y = -1.5 step 0.1 until 1.55: + drawarrow ((x, y) * unit) + --(((x,y) * unit) shifted (8 * dglField(x,y))) + withcolor blue; + endfor; +endfor; + +endfig; + +% +% Vektorfeld in der Ebene mit Lösungskurve +% Euler(1) +% +beginfig(2) + +numeric unit; +unit := 150; + +z0 = ( 0, 0); +z1 = (-1.5, 0) * unit; +z2 = ( 1.5, 0) * unit; +z3 = ( 0, -1.5) * unit; +z4 = ( 0, 1.5) * unit; + +pickup pencircle scaled 1pt; +drawarrow (z1 shifted (-10,0))--(z2 shifted (10,0)); +drawarrow (z3 shifted (0,-10))--(z4 shifted (0,10)); +label.top(btex $x_1$ etex, z2 shifted (10,0)); +label.rt(btex $x_2$ etex, z4 shifted (0,10)); + +def dglField(expr x, y) = + (-y, x) +enddef; + +def dglFieldp(expr z) = + dglField(xpart z, ypart z) +enddef; + +def curve(expr z, l, s) = + path p; + p := z; + for t = 0 step 1 until l: + p := p--((point (length p) of p) shifted (s * dglFieldp(point (length p) of p))); + endfor; + draw p scaled unit withcolor red; +enddef; + +pair A; +A := (1, 0); +draw A scaled unit withpen pencircle scaled 8bp withcolor red; +curve(A, 0, 1); + +% Draw arrows for each grid point +pickup pencircle scaled 0.5pt; +for x = -1.5 step 0.1 until 1.55: + for y = -1.5 step 0.1 until 1.55: + drawarrow ((x, y) * unit) + --(((x,y) * unit) shifted (8 * dglField(x,y))) + withcolor blue; + endfor; +endfor; + +endfig; + +% +% Vektorfeld in der Ebene mit Lösungskurve +% Euler(2) +% +beginfig(3) + +numeric unit; +unit := 150; + +z0 = ( 0, 0); +z1 = (-1.5, 0) * unit; +z2 = ( 1.5, 0) * unit; +z3 = ( 0, -1.5) * unit; +z4 = ( 0, 1.5) * unit; + +pickup pencircle scaled 1pt; +drawarrow (z1 shifted (-10,0))--(z2 shifted (10,0)); +drawarrow (z3 shifted (0,-10))--(z4 shifted (0,10)); +label.top(btex $x_1$ etex, z2 shifted (10,0)); +label.rt(btex $x_2$ etex, z4 shifted (0,10)); + +def dglField(expr x, y) = + (-y, x) +enddef; + +def dglFieldp(expr z) = + dglField(xpart z, ypart z) +enddef; + +def curve(expr z, l, s) = + path p; + p := z; + for t = 0 step 1 until l: + p := p--((point (length p) of p) shifted (s * dglFieldp(point (length p) of p))); + endfor; + draw p scaled unit withcolor red; +enddef; + +pair A; +A := (1, 0); +draw A scaled unit withpen pencircle scaled 8bp withcolor red; +curve(A, 1, 0.5); + +% Draw arrows for each grid point +pickup pencircle scaled 0.5pt; +for x = -1.5 step 0.1 until 1.55: + for y = -1.5 step 0.1 until 1.55: + drawarrow ((x, y) * unit) + --(((x,y) * unit) shifted (8 * dglField(x,y))) + withcolor blue; + endfor; +endfor; + +endfig; + +% +% Vektorfeld in der Ebene mit Lösungskurve +% Euler(3) +% +beginfig(4) + +numeric unit; +unit := 150; + +z0 = ( 0, 0); +z1 = (-1.5, 0) * unit; +z2 = ( 1.5, 0) * unit; +z3 = ( 0, -1.5) * unit; +z4 = ( 0, 1.5) * unit; + +pickup pencircle scaled 1pt; +drawarrow (z1 shifted (-10,0))--(z2 shifted (10,0)); +drawarrow (z3 shifted (0,-10))--(z4 shifted (0,10)); +label.top(btex $x_1$ etex, z2 shifted (10,0)); +label.rt(btex $x_2$ etex, z4 shifted (0,10)); + +def dglField(expr x, y) = + (-y, x) +enddef; + +def dglFieldp(expr z) = + dglField(xpart z, ypart z) +enddef; + +def curve(expr z, l, s) = + path p; + p := z; + for t = 0 step 1 until l: + p := p--((point (length p) of p) shifted (s * dglFieldp(point (length p) of p))); + endfor; + draw p scaled unit withcolor red; +enddef; + +pair A; +A := (1, 0); +draw A scaled unit withpen pencircle scaled 8bp withcolor red; +curve(A, 3, 0.25); + +% Draw arrows for each grid point +pickup pencircle scaled 0.5pt; +for x = -1.5 step 0.1 until 1.55: + for y = -1.5 step 0.1 until 1.55: + drawarrow ((x, y) * unit) + --(((x,y) * unit) shifted (8 * dglField(x,y))) + withcolor blue; + endfor; +endfor; + +endfig; + +% +% Vektorfeld in der Ebene mit Lösungskurve +% Euler(4) +% +beginfig(5) + +numeric unit; +unit := 150; + +z0 = ( 0, 0); +z1 = (-1.5, 0) * unit; +z2 = ( 1.5, 0) * unit; +z3 = ( 0, -1.5) * unit; +z4 = ( 0, 1.5) * unit; + +pickup pencircle scaled 1pt; +drawarrow (z1 shifted (-10,0))--(z2 shifted (10,0)); +drawarrow (z3 shifted (0,-10))--(z4 shifted (0,10)); +label.top(btex $x_1$ etex, z2 shifted (10,0)); +label.rt(btex $x_2$ etex, z4 shifted (0,10)); + +def dglField(expr x, y) = + (-y, x) +enddef; + +def dglFieldp(expr z) = + dglField(xpart z, ypart z) +enddef; + +def curve(expr z, l, s) = + path p; + p := z; + for t = 0 step 1 until l: + p := p--((point (length p) of p) shifted (s * dglFieldp(point (length p) of p))); + endfor; + draw p scaled unit withcolor red; +enddef; + +pair A; +A := (1, 0); +draw A scaled unit withpen pencircle scaled 8bp withcolor red; +curve(A, 7, 0.125); + +% Draw arrows for each grid point +pickup pencircle scaled 0.5pt; +for x = -1.5 step 0.1 until 1.55: + for y = -1.5 step 0.1 until 1.55: + drawarrow ((x, y) * unit) + --(((x,y) * unit) shifted (8 * dglField(x,y))) + withcolor blue; + endfor; +endfor; + +endfig; + +% +% Vektorfeld in der Ebene mit Lösungskurve +% Euler(5) +% +beginfig(6) + +numeric unit; +unit := 150; + +z0 = ( 0, 0); +z1 = (-1.5, 0) * unit; +z2 = ( 1.5, 0) * unit; +z3 = ( 0, -1.5) * unit; +z4 = ( 0, 1.5) * unit; + +pickup pencircle scaled 1pt; +drawarrow (z1 shifted (-10,0))--(z2 shifted (10,0)); +drawarrow (z3 shifted (0,-10))--(z4 shifted (0,10)); +label.top(btex $x_1$ etex, z2 shifted (10,0)); +label.rt(btex $x_2$ etex, z4 shifted (0,10)); + +def dglField(expr x, y) = + (-y, x) +enddef; + +def dglFieldp(expr z) = + dglField(xpart z, ypart z) +enddef; + +def curve(expr z, l, s) = + path p; + p := z; + for t = 0 step 1 until l: + p := p--((point (length p) of p) shifted (s * dglFieldp(point (length p) of p))); + endfor; + draw p scaled unit withcolor red; +enddef; + +pair A; +A := (1, 0); +draw A scaled unit withpen pencircle scaled 8bp withcolor red; +curve(A, 99, 0.01); + +% Draw arrows for each grid point +pickup pencircle scaled 0.5pt; +for x = -1.5 step 0.1 until 1.55: + for y = -1.5 step 0.1 until 1.55: + drawarrow ((x, y) * unit) + --(((x,y) * unit) shifted (8 * dglField(x,y))) + withcolor blue; + endfor; +endfor; + +endfig; + + +end; diff --git a/vorlesungen/slides/10/vektorfelder.tex b/vorlesungen/slides/10/vektorfelder.tex new file mode 100644 index 0000000..3ba7cda --- /dev/null +++ b/vorlesungen/slides/10/vektorfelder.tex @@ -0,0 +1,82 @@ +% +% iterativ.tex -- Iterative Approximation in \dot x = J x +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% Erstellt durch Roy Seitz +% +% !TeX spellcheck = de_CH +\bgroup +\begin{frame}[t] + \setlength{\abovedisplayskip}{5pt} + \setlength{\belowdisplayskip}{5pt} + \frametitle{Als Strömungsfeld} + \vspace{-20pt} + \begin{columns}[t,onlytextwidth] + \begin{column}{0.48\textwidth} + \vfil + \only<1|handout:0>{ + \includegraphics[width=\linewidth,keepaspectratio] + {../slides/10/vektorfelder-1.pdf} + } + \only<2|handout:0>{ + \includegraphics[width=\linewidth,keepaspectratio] + {../slides/10/vektorfelder-2.pdf} + } + \only<3>{ + \includegraphics[width=\linewidth,keepaspectratio] + {../slides/10/vektorfelder-3.pdf} + } + \only<4|handout:0>{ + \includegraphics[width=\linewidth,keepaspectratio] + {../slides/10/vektorfelder-4.pdf} + } + \only<5|handout:0>{ + \includegraphics[width=\linewidth,keepaspectratio] + {../slides/10/vektorfelder-5.pdf} + } + \only<6-|handout:0>{ + \includegraphics[width=\linewidth,keepaspectratio] + {../slides/10/vektorfelder-6.pdf} + } + \vfil + \end{column} + \begin{column}{0.48\textwidth} + \begin{block}{Differentialgleichung} + \[ + \dot x(t) = J x(t) + \quad + J = \begin{pmatrix} 0 & -1 \\ 1 & \phantom-0 \end{pmatrix} + \quad + x_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \] + \end{block} + + \only<2|handout:0>{ + Nach einem Schritt der Länge $t$: + \[ + x(t) = x_0 + \dot x t = x_0 + Jx_0t = (1 + Jt)x_0 + \] + } + + \only<3|handout:0>{ + Nach zwei Schritten der Länge $t/2$: + \[ + x(t) = \left(1 + \frac{Jt}{2}\right)^2x_0 + \] + } + + \only<4->{ + Nach n Schritten der Länge $t/n$: + \[ + x(t) = \left(1 + \frac{Jt}{n}\right)^nx_0 + \] + } + \only<6->{ + \[ + \lim_{n\to\infty}\left(1 + \frac{At}{n}\right)^n = \exp(At) + \] + } + \end{column} + \end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/4/Makefile.inc b/vorlesungen/slides/4/Makefile.inc index 6616f56..1ab27fa 100644 --- a/vorlesungen/slides/4/Makefile.inc +++ b/vorlesungen/slides/4/Makefile.inc @@ -1,26 +1,36 @@ - -# -# Makefile.inc -- additional depencencies -# -# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule -# -chapter4 = \ - ../slides/4/ggt.tex \ - ../slides/4/euklidmatrix.tex \ - ../slides/4/euklidbeispiel.tex \ - ../slides/4/euklidtabelle.tex \ - ../slides/4/fp.tex \ - ../slides/4/division.tex \ - ../slides/4/gauss.tex \ - ../slides/4/dh.tex \ - ../slides/4/divisionpoly.tex \ - ../slides/4/euklidpoly.tex \ - ../slides/4/polynomefp.tex \ - ../slides/4/schieberegister.tex \ - ../slides/4/charakteristik.tex \ - ../slides/4/char2.tex \ - ../slides/4/frobenius.tex \ - ../slides/4/qundr.tex \ - ../slides/4/alpha.tex \ - ../slides/4/chapter.tex - +
+#
+# Makefile.inc -- additional depencencies
+#
+# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+#
+chapter4 = \
+ ../slides/4/ggt.tex \
+ ../slides/4/euklidmatrix.tex \
+ ../slides/4/euklidbeispiel.tex \
+ ../slides/4/euklidtabelle.tex \
+ ../slides/4/fp.tex \
+ ../slides/4/division.tex \
+ ../slides/4/gauss.tex \
+ ../slides/4/dh.tex \
+ ../slides/4/divisionpoly.tex \
+ ../slides/4/euklidpoly.tex \
+ ../slides/4/polynomefp.tex \
+ ../slides/4/schieberegister.tex \
+ ../slides/4/charakteristik.tex \
+ ../slides/4/char2.tex \
+ ../slides/4/frobenius.tex \
+ ../slides/4/qundr.tex \
+ ../slides/4/alpha.tex \
+ ../slides/4/galois/erweiterung.tex \
+ ../slides/4/galois/automorphismus.tex \
+ ../slides/4/galois/konstruktion.tex \
+ ../slides/4/galois/wuerfel.tex \
+ ../slides/4/galois/winkeldreiteilung.tex \
+ ../slides/4/galois/quadratur.tex \
+ ../slides/4/galois/radikale.tex \
+ ../slides/4/galois/aufloesbarkeit.tex \
+ ../slides/4/galois/sn.tex \
+ ../slides/4/chapter.tex
+
+
diff --git a/vorlesungen/slides/4/chapter.tex b/vorlesungen/slides/4/chapter.tex index 6872018..3015e7c 100644 --- a/vorlesungen/slides/4/chapter.tex +++ b/vorlesungen/slides/4/chapter.tex @@ -1,22 +1,31 @@ -% -% chapter.tex -% -% (c) 2021 Prof Dr Andreas Müller, Hochschule Rapperswi -% -\folie{4/ggt.tex} -\folie{4/euklidmatrix.tex} -\folie{4/euklidbeispiel.tex} -\folie{4/euklidtabelle.tex} -\folie{4/fp.tex} -\folie{4/division.tex} -\folie{4/gauss.tex} -\folie{4/dh.tex} -\folie{4/divisionpoly.tex} -\folie{4/euklidpoly.tex} -\folie{4/polynomefp.tex} -\folie{4/alpha.tex} -\folie{4/schieberegister.tex} -\folie{4/charakteristik.tex} -\folie{4/char2.tex} -\folie{4/frobenius.tex} -\folie{4/qundr.tex} +%
+% chapter.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, Hochschule Rapperswi
+%
+\folie{4/ggt.tex}
+\folie{4/euklidmatrix.tex}
+\folie{4/euklidbeispiel.tex}
+\folie{4/euklidtabelle.tex}
+\folie{4/fp.tex}
+\folie{4/division.tex}
+\folie{4/gauss.tex}
+\folie{4/dh.tex}
+\folie{4/divisionpoly.tex}
+\folie{4/euklidpoly.tex}
+\folie{4/polynomefp.tex}
+\folie{4/alpha.tex}
+\folie{4/schieberegister.tex}
+\folie{4/charakteristik.tex}
+\folie{4/char2.tex}
+\folie{4/frobenius.tex}
+\folie{4/qundr.tex}
+\folie{4/galois/erweiterung.tex}
+\folie{4/galois/automorphismus.tex}
+\folie{4/galois/konstruktion.tex}
+\folie{4/galois/wuerfel.tex}
+\folie{4/galois/winkeldreiteilung.tex}
+\folie{4/galois/quadratur.tex}
+\folie{4/galois/radikale.tex}
+\folie{4/galois/aufloesbarkeit.tex}
+\folie{4/galois/sn.tex}
diff --git a/vorlesungen/slides/4/galois/aufloesbarkeit.tex b/vorlesungen/slides/4/galois/aufloesbarkeit.tex new file mode 100644 index 0000000..3d52b00 --- /dev/null +++ b/vorlesungen/slides/4/galois/aufloesbarkeit.tex @@ -0,0 +1,120 @@ +%
+% aufloesbarkeit.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Auflösbarkeit}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\uncover<2->{%
+\begin{block}{Radikalerweiterung}
+Automorphismen $f\in \operatorname{Gal}(\Bbbk(\alpha)/\Bbbk)$
+einer Radikalerweiterung
+\[
+\Bbbk \subset \Bbbk(\alpha)
+\]
+sind festgelegt durch Wahl von $f(\alpha)$.
+
+\begin{itemize}
+\item<3-> Warum: Alle $f(\alpha^k)$ sind auch festgelegt
+\item<4-> $f(\alpha)$ muss eine andere Nullstelle des Minimalpolynoms sein
+\end{itemize}
+
+\end{block}}
+\uncover<8->{%
+\begin{block}{Irreduzibles Polynom $m(X)\in\mathbb{Q}[X]$}
+$\mathbb{Q}\subset \Bbbk$,
+$n$ verschiedene Nullstellen $\mathbb{C}$:
+\[
+\uncover<9->{
+\operatorname{Gal}(\Bbbk/\mathbb{Q})
+\cong
+S_n}
+\uncover<10->{
+\quad
+\text{auflösbar?}}
+\]
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\begin{block}{\uncover<5->{Galois-Gruppen}}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\def\s{1.2}
+
+\uncover<2->{
+\fill[color=blue!20] (-1.1,-0.3) rectangle (0.3,{5*\s+0.3});
+\node[color=blue] at (-0.7,{2.5*\s}) [rotate=90] {Radikalerweiterungen};
+}
+
+\node at (0,0) {$\mathbb{Q}$};
+\node at (0,{1*\s}) {$E_1$};
+\node at (0,{2*\s}) {$E_2$};
+\node at (0,{3*\s}) {$E_3$};
+\node at (0,{4*\s}) {$\vdots\mathstrut$};
+\node at (0,{5*\s}) {$\Bbbk$};
+\draw[shorten >= 0.3cm,shorten <= 0.3cm] (0,{0*\s}) -- (0,{1*\s});
+\draw[shorten >= 0.3cm,shorten <= 0.3cm] (0,{1*\s}) -- (0,{2*\s});
+\draw[shorten >= 0.3cm,shorten <= 0.3cm] (0,{2*\s}) -- (0,{3*\s});
+\draw[shorten >= 0.3cm,shorten <= 0.3cm] (0,{3*\s}) -- (0,{4*\s});
+\draw[shorten >= 0.3cm,shorten <= 0.3cm] (0,{4*\s}) -- (0,{5*\s});
+
+\begin{scope}[xshift=0.5cm]
+\uncover<7->{
+\fill[color=red!20] (0,{0*\s-0.3}) rectangle (4.8,{5*\s+0.3});
+\node[color=red] at (4.5,{2.5*\s}) [rotate=90] {Auflösung der Galois-Gruppe};
+}
+\uncover<5->{
+\node at (0,{0*\s}) [right] {$\operatorname{Gal}(\Bbbk/\mathbb{Q})$};
+\node at (0,{1*\s}) [right] {$\operatorname{Gal}(\Bbbk/E_1)$};
+\node at (0,{2*\s}) [right] {$\operatorname{Gal}(\Bbbk/E_2)$};
+\node at (0,{3*\s}) [right] {$\operatorname{Gal}(\Bbbk/E_3)$};
+\node at (1,{4*\s}) {$\vdots\mathstrut$};
+\node at (0,{5*\s}) [right] {$\operatorname{Gal}(\Bbbk/\Bbbk)$};
+\node at (1,{0.5*\s}) {$\cap\mathstrut$};
+\node at (1,{1.5*\s}) {$\cap\mathstrut$};
+\node at (1,{2.5*\s}) {$\cap\mathstrut$};
+\node at (1,{3.5*\s}) {$\cap\mathstrut$};
+\node at (1,{4.5*\s}) {$\cap\mathstrut$};
+}
+
+\uncover<6->{
+\begin{scope}[xshift=2.5cm]
+\node at (0,{0*\s}) {$G_n$};
+\node at (0,{1*\s}) {$G_{n-1}$};
+\node at (0,{2*\s}) {$G_{n-2}$};
+\node at (0,{3*\s}) {$G_{n-3}$};
+\node at (0,{5*\s}) {$G_0=\{e\}$};
+\node at (0,{0.5*\s}) {$\cap\mathstrut$};
+\node at (0,{1.5*\s}) {$\cap\mathstrut$};
+\node at (0,{2.5*\s}) {$\cap\mathstrut$};
+\node at (0,{3.5*\s}) {$\cap\mathstrut$};
+\node at (0,{4.5*\s}) {$\cap\mathstrut$};
+}
+
+\uncover<7->{
+\node[color=red] at (0.2,{0.5*\s+0.1}) [right] {\tiny $G_n/G_{n-1}$};
+\node[color=red] at (0.2,{0.5*\s-0.1}) [right] {\tiny abelsch};
+
+\node[color=red] at (0.2,{1.5*\s+0.1}) [right] {\tiny $G_{n-1}/G_{n-2}$};
+\node[color=red] at (0.2,{1.5*\s-0.1}) [right] {\tiny abelsch};
+
+\node[color=red] at (0.2,{2.5*\s+0.1}) [right] {\tiny $G_{n-2}/G_{n-3}$};
+\node[color=red] at (0.2,{2.5*\s-0.1}) [right] {\tiny abelsch};
+}
+
+\end{scope}
+\end{scope}
+
+
+
+\end{tikzpicture}
+\end{center}
+\end{block}
+\end{column}
+\end{columns}
+\end{frame}
diff --git a/vorlesungen/slides/4/galois/automorphismus.tex b/vorlesungen/slides/4/galois/automorphismus.tex new file mode 100644 index 0000000..e59f9b9 --- /dev/null +++ b/vorlesungen/slides/4/galois/automorphismus.tex @@ -0,0 +1,118 @@ +%
+% automorphismus.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{4pt}
+\setlength{\belowdisplayskip}{4pt}
+\frametitle{Galois-Gruppe}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.40\textwidth}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\def\s{3.0}
+\begin{scope}[xshift=-1.5cm]
+\node at (0,{\s+0.1}) [above] {Körpererweiterung\strut};
+\node at (0,{\s}) {$G$};
+\draw[shorten >= 0.3cm,shorten <= 0.3cm] (0,{-\s}) -- (0,0);
+\draw[shorten >= 0.3cm,shorten <= 0.3cm] (0,{\s}) -- (0,0);
+\node at (0,{-0.5*\s}) [left] {$[F:E]$};
+\node at (0,{0.5*\s}) [left] {$[G:F]$};
+\node at (0,0) {$F$};
+\node at (0,{-\s}) {$E$};
+\end{scope}
+\uncover<3->{
+\begin{scope}[xshift=1.8cm]
+\node at (0,{\s+0.1}) [above] {Gruppe\strut};
+\fill (0,{-\s}) circle[radius=0.06];
+\fill (0,0) circle[radius=0.06];
+\fill (0,{\s}) circle[radius=0.06];
+\draw[shorten >= 0.1cm,shorten <= 0.1cm]
+ (0,{-\s}) to[out=100,in=-100] (0,{\s});
+\draw[shorten >= 0.1cm,shorten <= 0.1cm]
+ (0,{-\s}) to[out=80,in=-80] (0,0);
+\draw[shorten >= 0.1cm,shorten <= 0.1cm]
+ (0,0) to[out=80,in=-80] (0,{\s});
+\node at (-0.6,0) [rotate=90] {$\operatorname{Gal}(G/E)$};
+\node at (0.45,{0.5*\s}) [rotate=90] {$\operatorname{Gal}(G/F)$};
+\node at (0.45,{-0.5*\s}) [rotate=90] {$\operatorname{Gal}(F/E)$};
+\end{scope}
+\draw[->,color=red!20,line width=14pt] (-1.4,{0.6*\s}) -- (1.4,{0.6*\s});
+\node[color=red] at (0,{0.6*\s}) {$\operatorname{Gal}$};
+}
+\uncover<4->{
+\draw[<-,color=blue!20,line width=14pt] (-1.4,{-0.6*\s}) -- (1.4,{-0.6*\s});
+\node[color=blue] at (0,{-0.6*\s}) {$\operatorname{Fix}, F^H$};
+}
+\end{tikzpicture}
+\end{center}
+\end{column}
+\begin{column}{0.56\textwidth}
+\uncover<2->{%
+\begin{block}{Automorphismus}
+\vspace{-10pt}
+\[
+\operatorname{Aut}(F)
+=
+\left\{
+f\colon F\to F
+\left|
+\begin{aligned}
+f(x+y)&=f(x)+f(y)\\
+f(xy)&=f(x)f(y)
+\end{aligned}
+\right.
+\right\}
+\]
+\end{block}}
+\vspace{-10pt}
+\uncover<3->{%
+\begin{block}{Galois-Gruppe}
+Automorphismen, die $E$ festlassen
+\[
+{\color{red}
+\operatorname{Gal}(F/E)
+}
+=
+\left\{
+\varphi\in\operatorname{Aut}(F)\;|\; \varphi(x)=x\forall x\in E
+\right\}
+\]
+\end{block}}
+\vspace{-10pt}
+\uncover<4->{%
+\begin{block}{Fixkörper}
+$H\subset \operatorname{Aut}(F)$:
+\begin{align*}
+{\color{blue}F^H}
+&=
+\{x\in F\;|\; hx = x\forall h\in H\}
+=\operatorname{Fix}(H)
+\end{align*}
+\end{block}}
+\vspace{-13pt}
+\uncover<5->{%
+\begin{block}{Beispiel}
+\begin{itemize}
+\item<6->
+\(
+\operatorname{Gal}(\mathbb{C}/\mathbb{R})
+=
+\{
+\operatorname{id}_{\mathbb{C}},
+\operatorname{conj}\colon z\mapsto\overline{z}
+\}
+\)
+\item<7->
+\(
+\mathbb{C}^{\operatorname{conj}}
+=
+\mathbb{R}
+\)
+\end{itemize}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
diff --git a/vorlesungen/slides/4/galois/erweiterung.tex b/vorlesungen/slides/4/galois/erweiterung.tex new file mode 100644 index 0000000..20b278e --- /dev/null +++ b/vorlesungen/slides/4/galois/erweiterung.tex @@ -0,0 +1,65 @@ +%
+% erweiterung.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Körpererweiterungen}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Körpererweiterung}
+$E,F$ Körper: $E\subset F$
+\end{block}
+\uncover<6->{%
+\begin{block}{Vektorraum}
+$F$ ist ein Vektorraum über $E$
+\end{block}}
+\uncover<7->{%
+\begin{block}{Endliche Körpererweiterung}
+$\dim_E F < \infty$
+\end{block}}
+\uncover<8->{%
+\begin{block}{Adjunktion eines $\alpha$}
+$\Bbbk(\alpha)$ kleinster Körper, der $\Bbbk$ und
+$\alpha$ enthält.
+\end{block}}
+\uncover<9->{%
+\begin{block}{Algebraische Erweiterung}
+$\alpha$ algebraisch über $\Bbbk$, i.~e.~Nullstelle von
+$m(X)\in\Bbbk[X]$
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<2->{%
+\begin{block}{Beispiele}
+\begin{enumerate}
+\item<3->
+$\mathbb{R} \subset \mathbb{R}(i) = \mathbb{C}$
+\item<4->
+$\mathbb{Q}\subset \mathbb{Q}(\sqrt{2})$
+\item<5->
+$\mathbb{Q} \subset \mathbb{Q}(\sqrt{2}) \subset \mathbb{Q}(\sqrt[4]{2})$
+\end{enumerate}
+\end{block}}
+\uncover<7->{%
+\begin{block}{Grad}
+$E\subset F$ heisst Körpererweiterung vom Grad $n$, falls
+\[
+\dim_E F = n =: [F:E]
+\]
+\uncover<8->{%
+Gleichbedeutend: $\deg m(X) = n$}
+\uncover<10->{%
+\[
+E\subset F\subset G
+\Rightarrow
+[G:E] = [G:F]\cdot [F:E]
+\]
+(in unseren Fällen)}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
diff --git a/vorlesungen/slides/4/galois/images/Makefile b/vorlesungen/slides/4/galois/images/Makefile new file mode 100644 index 0000000..fd197ce --- /dev/null +++ b/vorlesungen/slides/4/galois/images/Makefile @@ -0,0 +1,12 @@ +#
+# Makefile
+#
+# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+#
+all: wuerfel2.png wuerfel.png
+
+wuerfel.png: wuerfel.pov common.inc
+ povray +A0.1 -W1080 -H1080 -Owuerfel.png wuerfel.pov
+
+wuerfel2.png: wuerfel2.pov common.inc
+ povray +A0.1 -W1080 -H1080 -Owuerfel2.png wuerfel2.pov
diff --git a/vorlesungen/slides/4/galois/images/common.inc b/vorlesungen/slides/4/galois/images/common.inc new file mode 100644 index 0000000..44ee4c8 --- /dev/null +++ b/vorlesungen/slides/4/galois/images/common.inc @@ -0,0 +1,89 @@ +//
+// common.inc
+//
+// (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+//
+#version 3.7;
+#include "colors.inc"
+#include "textures.inc"
+#include "stones.inc"
+
+global_settings {
+ assumed_gamma 1
+}
+
+#declare imagescale = 0.133;
+#declare O = <0, 0, 0>;
+#declare E = <1, 1, 1>;
+#declare a = pow(2, 1/3);
+#declare at = 0.02;
+
+camera {
+ location <3, 2, 12>
+ look_at E * (a / 2) * 0.93
+ right x * imagescale
+ up y * imagescale
+}
+
+light_source {
+ <11, 20, 16> color White
+ area_light <1,0,0> <0,0,1>, 10, 10
+ adaptive 1
+ jitter
+}
+
+sky_sphere {
+ pigment {
+ color rgb<1,1,1>
+ }
+}
+
+#macro wuerfelgitter(A, AT)
+ cylinder { O, <A, 0, 0>, AT }
+ cylinder { O, <0, A, 0>, AT }
+ cylinder { O, <0, 0, A>, AT }
+ cylinder { <A, 0, 0>, <A, A, 0>, AT }
+ cylinder { <A, 0, 0>, <A, 0, A>, AT }
+ cylinder { <0, A, 0>, <A, A, 0>, AT }
+ cylinder { <0, A, 0>, <0, A, A>, AT }
+ cylinder { <0, 0, A>, <A, 0, A>, AT }
+ cylinder { <0, 0, A>, <0, A, A>, AT }
+ cylinder { <A, A, 0>, <A, A, A>, AT }
+ cylinder { <A, 0, A>, <A, A, A>, AT }
+ cylinder { <0, A, A>, <A, A, A>, AT }
+ sphere { <0, 0, 0>, AT }
+ sphere { <A, 0, 0>, AT }
+ sphere { <0, A, 0>, AT }
+ sphere { <0, 0, A>, AT }
+ sphere { <A, A, 0>, AT }
+ sphere { <A, 0, A>, AT }
+ sphere { <0, A, A>, AT }
+ sphere { <A, A, A>, AT }
+#end
+
+#macro wuerfel()
+ union {
+ box { O, E }
+ wuerfelgitter(1, 0.5*at)
+ texture {
+ T_Grnt24
+ }
+ finish {
+ specular 0.9
+ metallic
+ }
+ }
+#end
+
+#macro wuerfel2()
+ union {
+ wuerfelgitter(a, at)
+ pigment {
+ color rgb<0.8,0.4,0.4>
+ }
+ finish {
+ specular 0.9
+ metallic
+ }
+ }
+#end
diff --git a/vorlesungen/slides/4/galois/images/wuerfel.png b/vorlesungen/slides/4/galois/images/wuerfel.png Binary files differnew file mode 100644 index 0000000..ff6fc14 --- /dev/null +++ b/vorlesungen/slides/4/galois/images/wuerfel.png diff --git a/vorlesungen/slides/4/galois/images/wuerfel.pov b/vorlesungen/slides/4/galois/images/wuerfel.pov new file mode 100644 index 0000000..a0466f3 --- /dev/null +++ b/vorlesungen/slides/4/galois/images/wuerfel.pov @@ -0,0 +1,9 @@ +//
+// wuerfel.pov
+//
+// (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+//
+#include "common.inc"
+
+wuerfel()
+
diff --git a/vorlesungen/slides/4/galois/images/wuerfel2.png b/vorlesungen/slides/4/galois/images/wuerfel2.png Binary files differnew file mode 100644 index 0000000..68919cc --- /dev/null +++ b/vorlesungen/slides/4/galois/images/wuerfel2.png diff --git a/vorlesungen/slides/4/galois/images/wuerfel2.pov b/vorlesungen/slides/4/galois/images/wuerfel2.pov new file mode 100644 index 0000000..a11bab0 --- /dev/null +++ b/vorlesungen/slides/4/galois/images/wuerfel2.pov @@ -0,0 +1,9 @@ +//
+// wuerfel.pov
+//
+// (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+//
+#include "common.inc"
+
+wuerfel()
+wuerfel2()
diff --git a/vorlesungen/slides/4/galois/konstruktion.tex b/vorlesungen/slides/4/galois/konstruktion.tex new file mode 100644 index 0000000..b461d44 --- /dev/null +++ b/vorlesungen/slides/4/galois/konstruktion.tex @@ -0,0 +1,147 @@ +%
+% konstruktion.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\begin{frame}[t]
+\frametitle{Konstruktion mit Zirkel und Lineal}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Strahlensatz}
+\uncover<6->{%
+Jedes beliebige rationale Streckenverhältnis $\frac{p}{q}$
+kann mit Zirkel und Lineal konstruiert werden.}
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<7->{%
+\begin{block}{Kreis--Gerade}
+Aus $c$ und $a$ konstruiere $b=\sqrt{c^2-a^2}$
+\uncover<13->{%
+$\Rightarrow$ jede beliebige Quadratwurzel kann konstruiert werden}
+\end{block}}
+\end{column}
+\end{columns}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\def\s{0.5}
+\def\t{0.45}
+
+\coordinate (A) at (0,0);
+\coordinate (B) at ({10*\t},0);
+
+\uncover<2->{
+ \draw (0,0) -- (30:{10.5*\s});
+}
+
+\uncover<3->{
+ \foreach \x in {0,...,10}{
+ \fill (30:{\x*\s}) circle[radius=0.03];
+ }
+ \foreach \x in {0,1,2,3,4,7,8,9}{
+ \node at (30:{\x*\s}) [above] {\tiny $\x$};
+ }
+ \node at (30:{10*\s}) [above right] {$q=10$};
+}
+
+\uncover<4->{
+ \foreach \x in {1,...,10}{
+ \fill (0:{\x*\t}) circle[radius=0.03];
+ \draw[->,line width=0.2pt] (30:{\x*\s}) -- (0:{\x*\t});
+ }
+}
+
+\draw (A) -- (0:{10.5*\t});
+\node at (A) [below left] {$A$};
+\node at (B) [below right] {$B$};
+\fill (A) circle[radius=0.05];
+\fill (B) circle[radius=0.05];
+
+\uncover<5->{
+ \node at (30:{6*\s}) [above left] {$p=6$};
+ \draw[line width=0.2pt] (0,0) -- (0,-0.4);
+ \draw[line width=0.2pt] ({6*\t},0) -- ({6*\t},-0.4);
+ \draw[<->] (0,-0.3) -- ({6*\t},-0.3);
+ \node at ({3*\t},-0.4) [below]
+ {$\displaystyle\frac{p}{q}\cdot\overline{AB}$};
+}
+
+\end{tikzpicture}
+\end{center}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<8->{%
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+
+%\foreach \x in {8,...,14}{
+% \only<\x>{\node at (4,4) {$\x$};}
+%}
+
+\def\r{4}
+\def\a{50}
+
+\coordinate (A) at ({\r*cos(\a)},0);
+
+\uncover<10->{
+ \fill[color=gray] (\r,0) -- (\r,0.3) arc (90:180:0.3) -- cycle;
+ \fill[color=gray]
+ (95:\r) -- ($(95:\r)+(185:0.3)$) arc (185:275:0.3) -- cycle;
+}
+
+\draw[->] (0,0) -- (95:\r);
+\node at (95:{0.5*\r}) [left] {$c$};
+
+\begin{scope}
+ \clip (-1,-0.3) rectangle (4.5,4.1);
+ \uncover<10->{
+ \draw (-1,0) -- (5,0);
+ \draw[->] (0,0) -- (\r,0);
+ \draw (0,0) circle[radius=\r];
+ \draw ({\r*cos(\a)},-1) -- ({\r*cos(\a)},5);
+ }
+\end{scope}
+
+\uncover<11->{
+ \fill[color=blue!20] (0,0) -- (A) -- (\a:\r) -- cycle;
+}
+
+\uncover<9->{
+ \fill[color=gray!80] (A) -- ($(A)+(0,0.5)$) arc (90:180:0.5) -- cycle;
+ \fill[color=gray!120] ($(A)+(-0.2,0.2)$) circle[radius=0.07];
+ \draw ({\r*cos(\a)},-0.3) -- ({\r*cos(\a)},4.1);
+}
+
+\uncover<11->{
+ \draw[color=blue,line width=1.4pt] (0,0) -- (\a:\r);
+ \node[color=blue] at (\a:{0.5*\r}) [above left] {$c$};
+}
+
+\draw[color=blue,line width=1.4pt] (0,0) -- ({\r*cos(\a)},0);
+\fill[color=blue] (0,0) circle[radius=0.04];
+\fill[color=blue] (A) circle[radius=0.04];
+\node[color=blue] at ({0.5*\r*cos(\a)},0) [below] {$a$};
+
+\uncover<12->{
+ \fill[color=white,opacity=0.8]
+ ({\r*cos(\a)+0.1},{0.5*\r*sin(\a)-0.25})
+ rectangle
+ ({\r*cos(\a)+2},{0.5*\r*sin(\a)+0.25});
+
+ \node[color=red] at ({\r*cos(\a)},{0.5*\r*sin(\a)}) [right]
+ {$b=\sqrt{c^2-a^2}$};
+ \draw[color=red,line width=1.4pt] ({\r*cos(\a)},0) -- (\a:\r);
+ \fill[color=red] (\a:\r) circle[radius=0.05];
+ \fill[color=red] (A) circle[radius=0.05];
+}
+
+\end{tikzpicture}
+\end{center}}
+\end{column}
+\end{columns}
+\uncover<14->{{\usebeamercolor[fg]{title}Folgerung:}
+Konstruierbar sind Körpererweiterungen $[F:E] = 2^l$}
+\end{frame}
diff --git a/vorlesungen/slides/4/galois/quadratur.tex b/vorlesungen/slides/4/galois/quadratur.tex new file mode 100644 index 0000000..f9510ba --- /dev/null +++ b/vorlesungen/slides/4/galois/quadratur.tex @@ -0,0 +1,66 @@ +%
+% quadratur.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\begin{frame}[t]
+\frametitle{Quadratur des Kreises}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.44\textwidth}
+\begin{center}
+\uncover<2->{%
+\begin{tikzpicture}[>=latex,thick]
+
+\def\r{2.8}
+\pgfmathparse{sqrt(3.14159)*\r/2}
+\xdef\s{\pgfmathresult}
+
+\fill[color=blue!20] (-\s,-\s) rectangle (\s,\s);
+\fill[color=red!40,opacity=0.5] (0,0) circle[radius=\r];
+
+\uncover<3->{
+ \draw[->,color=red] (0,0) -- (50:\r);
+ \fill[color=red] (0,0) circle[radius=0.04];
+ \node[color=red] at (50:{0.5*\r}) [below right] {$r$};
+}
+
+\uncover<4->{
+ \draw[line width=0.3pt] (-\s,-\s) -- (-\s,{-\s-0.7});
+ \draw[line width=0.3pt] (\s,-\s) -- (\s,{-\s-0.7});
+ \draw[<->,color=blue] (-\s,{-\s-0.6}) -- (\s,{-\s-0.6});
+ \node[color=blue] at (0,{-\s-0.6}) [below] {$l$};
+}
+
+\uncover<5->{
+ \node at (0,{-\s/2}) {${\color{red}\pi r^2}={\color{blue}l^2}
+ \;\Rightarrow\;
+ {\color{blue}l}={\color{red}\sqrt{\pi}r}$};
+}
+
+\end{tikzpicture}}
+\end{center}
+\end{column}
+\begin{column}{0.52\textwidth}
+\begin{block}{Aufgabe}
+Konstruiere ein zu einem Kreis flächengleiches Quadrat
+\end{block}
+\uncover<6->{%
+\begin{block}{Modifizierte Aufgabe}
+Konstruiere eine Strecke, deren Länge Lösung der Gleichung
+$x^2-\pi=0$ ist.
+\end{block}}
+\uncover<7->{%
+\begin{proof}[Unmöglichkeitsbeweis mit Widerspruch]
+\begin{itemize}
+\item<8-> Lösung in einem Erweiterungskörper
+\item<9-> Lösung ist Nullstelle eines Polynoms
+\item<10-> Lösung ist algebraisch
+\item<11-> $\pi$ ist {\bf nicht} algebraisch
+\uncover<12->{(Lindemann 1882\only<13>{, Weierstrass 1885})}
+\qedhere
+\end{itemize}
+\end{proof}}
+\end{column}
+\end{columns}
+\end{frame}
diff --git a/vorlesungen/slides/4/galois/radikale.tex b/vorlesungen/slides/4/galois/radikale.tex new file mode 100644 index 0000000..cb08dca --- /dev/null +++ b/vorlesungen/slides/4/galois/radikale.tex @@ -0,0 +1,69 @@ +%
+% radikale.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Lösung durch Radikale}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Problemstellung}
+Finde Nullstellen eines Polynomes
+\[
+p(X)
+=
+a_nX^n + a_{n-1}X^{n-1}
++\dots+
+a_1X+a_0
+\]
+$p\in\mathbb{Q}[X]$
+\end{block}
+\uncover<2->{%
+\begin{block}{Radikale}
+Geschachtelte Wurzelausdrücke
+\[
+\sqrt[3]{
+-\frac{q}2 +\sqrt{\frac{q^2}{4}+\frac{p^3}{27}}
+}
++
+\sqrt[3]{
+-\frac{q}2 -\sqrt{\frac{q^2}{4}+\frac{p^3}{27}}
+}
+\]
+\uncover<3->{(Lösung von $x^3+px+q=0$)}
+\end{block}}
+\uncover<4->{%
+\begin{block}{Lösbar durch Radikale}
+Nullstelle von $p(X)$ ist ein Radikal
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<5->{%
+\begin{block}{Algebraische Formulierung}
+Gegeben ein irreduzibles Polynom $p\in\mathbb{Q}[X]$,
+finde eine Körpererweiterung $\mathbb{Q}\subset\Bbbk$, derart,
+dass $p$ in $\Bbbk$ eine Nullstelle hat\uncover<6->{:
+$\Bbbk = \mathbb{Q}[X]/(p)$}
+\end{block}}
+\uncover<7->{%
+\begin{block}{Radikalerweiterung}
+Körpererweiterung $\Bbbk\subset\Bbbk'$ um $\alpha$ mit einer der Eigenschaften
+\begin{itemize}
+\item<8-> $\alpha$ ist eine Einheitswurzel
+\item<9-> $\alpha^k\in\Bbbk$
+\end{itemize}
+\end{block}}
+\vspace{-5pt}
+\uncover<10->{%
+\begin{block}{Lösbar durch Radikale}
+Radikalerweiterungen
+\[
+\mathbb{Q} \subset \Bbbk \subset \Bbbk' \subset \dots \subset \Bbbk'' \ni \alpha
+\]
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
diff --git a/vorlesungen/slides/4/galois/sn.tex b/vorlesungen/slides/4/galois/sn.tex new file mode 100644 index 0000000..f340825 --- /dev/null +++ b/vorlesungen/slides/4/galois/sn.tex @@ -0,0 +1,87 @@ +%
+% sn.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Nichtauflösbarkeit von $S_n$}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Die symmetrische Gruppe $S_n$}
+Permutationen auf $n$ Elementen
+\[
+\sigma
+=
+\begin{pmatrix}
+1&2&3&\dots&n\\
+\sigma(1)&\sigma(2)&\sigma(3)&\dots&\sigma(n)
+\end{pmatrix}
+\]
+\end{block}
+\vspace{-10pt}
+\uncover<2->{%
+\begin{block}{Signum}
+$t(\sigma)=\mathstrut$ Anzahl Transpositionen
+\[
+\operatorname{sgn}(\sigma)
+=
+(-1)^{t(\sigma)}
+=
+\begin{cases}
+\phantom{-}1&\text{$t(\sigma)$ gerade}
+\\
+-1&\text{$t(\sigma)$ ungerade}
+\end{cases}
+\]
+Homomorphismus!
+\end{block}}
+\uncover<3->{%
+\begin{block}{Die alternierende Gruppe $A_n$}
+\vspace{-12pt}
+\[
+A_n = \ker \operatorname{sgn}
+=
+\{\sigma\in S_n\;|\;\operatorname{sgn}(\sigma)=1\}
+\]
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<4->{%
+\begin{block}{Normale Untergruppe}
+\begin{itemize}
+\item
+$H\triangleleft G$ wenn $gHg^{-1}\subset G\;\forall g\in G$
+\item
+$G/N$ ist wohldefiniert
+\end{itemize}
+\end{block}}
+\vspace{-10pt}
+\uncover<5->{%
+\begin{block}{Einfache Gruppe}
+$G$ einfach $\Leftrightarrow$
+\[
+H\triangleleft G
+\;
+\Rightarrow
+\;
+\text{$H=\{e\}$ oder $H=G$}
+\]
+\end{block}}
+\vspace{-10pt}
+\uncover<6->{%
+\begin{block}{$n\ge 5 \Rightarrow A_n \text{ einfach}$}
+\begin{enumerate}
+\item<7-> Zeigen, dass $A_5$ einfach ist
+\item<8-> Vollständige Induktion: $A_n$ einfach $\Rightarrow A_{n+1}$ einfach
+\end{enumerate}
+\uncover<9->{%
+$\Rightarrow$ i.~A.~keine Lösung der
+einer Polynomgleichung vom Grad $\ge 5$ durch Radikale
+}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
diff --git a/vorlesungen/slides/4/galois/winkeldreiteilung.tex b/vorlesungen/slides/4/galois/winkeldreiteilung.tex new file mode 100644 index 0000000..28c07fe --- /dev/null +++ b/vorlesungen/slides/4/galois/winkeldreiteilung.tex @@ -0,0 +1,94 @@ +%
+% winkeldreiteilung.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Winkeldreiteilung}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.43\textwidth}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\def\r{5}
+\def\a{25}
+
+\uncover<3->{
+ \draw[line width=0.7pt] (\r,0) arc (0:90:\r);
+}
+
+\fill[color=blue!20] (0,0) -- (\r,0) arc(0:{3*\a}:\r) -- cycle;
+\node[color=blue] at ({1.5*\a}:{1.05*\r}) {$\alpha$};
+
+\draw[color=blue,line width=1.3pt] (\r,0) arc (0:{3*\a}:\r);
+
+\uncover<2->{
+ \fill[color=red!40,opacity=0.5] (0,0) -- (\r,0) arc(0:\a:\r) -- cycle;
+ \draw[color=red,line width=1.4pt] (\r,0) arc (0:\a:\r);
+ \node[color=red] at ({0.5*\a}:{0.7*\r})
+ {$\displaystyle\frac{\alpha}{3}$};
+}
+
+\uncover<3->{
+ \fill[color=blue] ({3*\a}:\r) circle[radius=0.05];
+ \draw[color=blue] ({3*\a}:\r) -- ({\r*cos(3*\a)},-0.1);
+
+ \fill[color=red] ({\a}:\r) circle[radius=0.05];
+ \draw[color=red] ({\a}:\r) -- ({\r*cos(\a)},-0.1);
+
+ \draw[->] (-0.1,0) -- ({\r+0.4},0) coordinate[label={$x$}];
+ \draw[->] (0,-0.1) -- (0,{\r+0.4}) coordinate[label={right:$y$}];
+}
+
+
+\uncover<4->{
+\node at ({0.5*\r},-0.5) [below] {$\displaystyle
+\cos{\color{blue}\alpha}
+=
+4\cos^3{\color{red}\frac{\alpha}3} -3 \cos {\color{red}\frac{\alpha}3}
+$};
+}
+
+\uncover<5->{
+ \node[color=blue] at ({\r*cos(3*\a)},0) [below] {$a\mathstrut$};
+ \node[color=red] at ({\r*cos(\a)},0) [below] {$x\mathstrut$};
+}
+
+\end{tikzpicture}
+\end{center}
+\end{column}
+\begin{column}{0.53\textwidth}
+\begin{block}{Aufgabe}
+Teile einen Winkel in drei gleiche Teile
+\end{block}
+\vspace{-2pt}
+\uncover<6->{%
+\begin{block}{Algebraisierte Aufgabe}
+Konstruiere $x$ aus $a$ derart, dass
+\[
+p(x)
+=
+x^3-\frac34 x -a = 0
+\]
+\uncover<7->{%
+$a=0$:}
+\uncover<8->{$p(x) = x(x^2-\frac{3}{4})\uncover<9->{\Rightarrow x = \frac{\sqrt{3}}2}$}
+\end{block}}
+\vspace{-2pt}
+\uncover<10->{%
+\begin{proof}[Unmöglichkeitsbeweis]
+\begin{itemize}
+\item<11->
+$a\ne 0$ $\Rightarrow$ $p(x)$ irreduzibel
+\item<12->
+$p(x)$ definiert eine Körpererweiterung vom Grad $3$
+\item<13->
+Konstruierbar sind nur Körpererweiterungen vom Grad $2^l$
+\qedhere
+\end{itemize}
+\end{proof}}
+\end{column}
+\end{columns}
+\end{frame}
diff --git a/vorlesungen/slides/4/galois/wuerfel.tex b/vorlesungen/slides/4/galois/wuerfel.tex new file mode 100644 index 0000000..907d60a --- /dev/null +++ b/vorlesungen/slides/4/galois/wuerfel.tex @@ -0,0 +1,64 @@ +%
+% wuerfel.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\begin{frame}[t]
+\frametitle{Würfelverdoppelung}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\node at (0,0) {\includegraphics[width=6.0cm]{../slides/4/galois/images/wuerfel.png}};
+\uncover<2->{
+\node at (0,0) {\includegraphics[width=6.0cm]{../slides/4/galois/images/wuerfel2.png}};
+}
+
+\uncover<3->{
+ \draw[<->,color=blue] (-1.25,-2.4) -- (2.55,-2.25);
+ \node[color=blue] at (0.75,-2.3) [above] {$a$};
+}
+
+\uncover<4->{
+ \begin{scope}[yshift=0.03cm]
+ \draw[color=red] (-2.13,-2.89) -- (-2.13,-3.19);
+ \draw[color=red] (2.85,-2.7) -- (2.85,-3.0);
+ \draw[<->,color=red] (-2.13,-3.09) -- (2.85,-2.9);
+ \end{scope}
+ \node[color=red] at (0.36,-2.9) [below] {$b$};
+}
+
+\uncover<5->{
+\node at (0,-4) {$
+ 2{\color{blue}a}^3={\color{red}b}^3
+ \uncover<6->{\;\Rightarrow\;
+ \frac{b}{a} = \sqrt[3]{2}}$};
+}
+
+\end{tikzpicture}
+\end{center}
+\end{column}
+\begin{column}{0.52\textwidth}
+\begin{block}{Aufgabe}
+Konstruiere einen Würfel mit doppeltem Volumen
+\end{block}
+\uncover<7->{%
+\begin{block}{Algebraisierte Aufgabe}
+Konstruiere eine Nullstelle von $p(x)=x^3-2$
+\end{block}}
+\uncover<8->{%
+\begin{proof}[Unmöglichkeitsbeweis]
+\begin{itemize}
+\item<9->
+$p(x)$ irreduzibel
+\item<10->
+$p(x)$ definiert eine Körpererweiterung vom Grad $3$
+\item<11->
+Nur Körpererweiterungen vom Grad $2^l$ sind konstruierbar
+\qedhere
+\end{itemize}
+\end{proof}}
+\end{column}
+\end{columns}
+\end{frame}
diff --git a/vorlesungen/slides/5/potenzreihenmethode.tex b/vorlesungen/slides/5/potenzreihenmethode.tex index 0c3503d..12d3fa5 100644 --- a/vorlesungen/slides/5/potenzreihenmethode.tex +++ b/vorlesungen/slides/5/potenzreihenmethode.tex @@ -79,7 +79,7 @@ a_k=\frac1{k!}a^kC} \\ \uncover<4->{ \Rightarrow y(x) &= C}\uncover<8->{+Cax}\uncover<9->{ + C\frac12(ax)^2} -\uncover<10->{ + C \frac16(ac)^3} +\uncover<10->{ + C \frac16(ax)^3} \uncover<11->{ + \dots+C\frac{1}{k!}(ax)^k+\dots} \ifthenelse{\boolean{presentation}}{ \only<12>{ diff --git a/vorlesungen/slides/6/Makefile.inc b/vorlesungen/slides/6/Makefile.inc new file mode 100644 index 0000000..b46d6b6 --- /dev/null +++ b/vorlesungen/slides/6/Makefile.inc @@ -0,0 +1,18 @@ +# +# Makefile.inc -- additional depencencies +# +# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +# +chapter6 = \ + ../slides/6/permutationen/matrizen.tex \ + \ + ../slides/6/darstellungen/definition.tex \ + ../slides/6/darstellungen/charakter.tex \ + ../slides/6/darstellungen/summe.tex \ + ../slides/6/darstellungen/irreduzibel.tex \ + ../slides/6/darstellungen/schur.tex \ + ../slides/6/darstellungen/skalarprodukt.tex \ + ../slides/6/darstellungen/zyklisch.tex \ + \ + ../slides/6/chapter.tex + diff --git a/vorlesungen/slides/6/chapter.tex b/vorlesungen/slides/6/chapter.tex new file mode 100644 index 0000000..37f442d --- /dev/null +++ b/vorlesungen/slides/6/chapter.tex @@ -0,0 +1,16 @@ +% +% chapter.tex +% +% (c) 2021 Prof Dr Andreas Müller, Hochschule Rapperswi +% + +\folie{6/permutationen/matrizen.tex} + +\folie{6/darstellungen/definition.tex} +\folie{6/darstellungen/charakter.tex} +\folie{6/darstellungen/summe.tex} +\folie{6/darstellungen/irreduzibel.tex} +\folie{6/darstellungen/schur.tex} +\folie{6/darstellungen/skalarprodukt.tex} +\folie{6/darstellungen/zyklisch.tex} + diff --git a/vorlesungen/slides/6/darstellungen/charakter.tex b/vorlesungen/slides/6/darstellungen/charakter.tex new file mode 100644 index 0000000..ea90b6d --- /dev/null +++ b/vorlesungen/slides/6/darstellungen/charakter.tex @@ -0,0 +1,108 @@ +% +% chrakter.tex -- Charakter einer Darstellung +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Charakter einer Darstellung} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.44\textwidth} +\begin{block}{Definition} +$\varrho\colon G\to\operatorname{GL}_n(\mathbb{C})$ eine Darstellung. +\\ +Der {\em Charakter} von $\varrho$ ist die Abbildung +\[ +\chi_{\varrho} +\colon +G\to \mathbb{C}^n +: +g\mapsto \chi_{\varrho}(g)=\operatorname{Spur}\varrho(g) +\] +\end{block} +\uncover<2->{% +\begin{block}{Eigenschaften} +\begin{enumerate} +\item +$\chi_{\varrho}(e) = n$ +\item<6-> +$\chi_{\varrho}(g^{-1}) = \overline{\chi_{\varrho}(g)}$ +\item<15-> +$\chi_{\varrho}(hgh^{-1}) = \chi_{\varrho}(g)$ +\end{enumerate} +\uncover<21->{% +Aus 3. folgt, dass Charaktere {\em Klassenfunktionen} sind} +\end{block}} +\end{column} +\begin{column}{0.52\textwidth} +\uncover<2->{% +\begin{block}{Begründung} +\begin{enumerate} +\item<3-> +$\chi_{\varrho}(e) += +\operatorname{Spur}\varrho(e) +\uncover<4->{= +\operatorname{Spur}I_n} +\uncover<5->{= +n} +$ +\item<6-> +$g$ hat endliche Ordnung, d.~h.~$g^k=e$ +\\ +\uncover<7->{% +$\lambda_i$ in der Jordan-NF erfüllen $\lambda_i^k=1$} +\\ +$\uncover<8->{\Rightarrow|\lambda_i|=1} +\uncover<9->{\Rightarrow \lambda_i^{-1} = \overline{\lambda_i}}$ +\begin{align*} +\uncover<10->{ +\llap{$\chi_{\varrho}(g^{-1})$} +&= +\operatorname{Spur}(\varrho(g^{-1}))} +\uncover<11->{= +\sum_{i} n_i\overline{\lambda_i}} +\\[-4pt] +&\uncover<12->{= +\overline{ +\sum_{i} n_i\lambda_i +}} +\uncover<13->{= +\operatorname{Spur}\varrho(g)} +\uncover<14->{= +\chi_{\varrho}(g)} +\end{align*} +\item<16-> +Durch Nachrechnen: +\begin{align*} +\chi_{\varrho}(hgh^{-1}) +&\uncover<17->{= +\operatorname{Spur} +( +\varrho(h) +\varrho(g) +\varrho(h^{-1}) +)} +\\ +&\uncover<18->{= +\operatorname{Spur} +( +\varrho(h^{-1}) +\varrho(h) +\varrho(g) +)} +\\ +&\uncover<19->{= +\operatorname{Spur}\varrho(g)} +\uncover<20->{= +\chi_{\varrho}(g)} +\end{align*} +\end{enumerate} +\end{block}} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/6/darstellungen/definition.tex b/vorlesungen/slides/6/darstellungen/definition.tex new file mode 100644 index 0000000..9d93e7f --- /dev/null +++ b/vorlesungen/slides/6/darstellungen/definition.tex @@ -0,0 +1,59 @@ +% +% definition.tex -- Definition einer Darstellung +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Darstellung} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Definition} +$G$ eine Gruppe, $V$ ein $\Bbbk$-Vektorraum. +\\ +\uncover<2->{% +Ein Homomorphismus +\[ +\varrho +\colon +G\to \operatorname{GL}(V) +\] +heisst {\em $n$-dimensionale Darstellung} der Gruppe $G$.} +\end{block} +\uncover<3->{% +\begin{block}{Idee} +Algebra und Analysis in $\operatorname{GL}_n(\Bbbk)$ nutzen, um +mehr über $G$ herauszufinden +\end{block}} +\end{column} +\begin{column}{0.48\textwidth} +\uncover<4->{% +\begin{block}{Beispiel $S_n$} +$S_n$ die symmetrische Gruppe, +$\sigma\mapsto A_{\tilde{f}}$ die +Abbildung auf die zugehörige Permutationsmatrix +ist eine $n$-dimensionale Darstellung von $S_n$ +\end{block}} +\uncover<5->{% +\begin{block}{Beispiel Matrizengruppe} +Eine Matrizengruppe $G$ ist eine Teilmenge von $M_n(\Bbbk)$. +\\ +\uncover<6->{% +$g\in G \Rightarrow g^{-1}\in G$, daher $G\subset\operatorname{GL}_n(\Bbbk)$} +\\ +\uncover<7->{% +Die Einbettung +\[ +G\to\operatorname{GL}_n(\Bbbk) +: +g \mapsto g +\] +ist eine Darstellung}\uncover<8->{, die sog.~{\em reguläre Darstellung}} +\end{block}} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/6/darstellungen/irreduzibel.tex b/vorlesungen/slides/6/darstellungen/irreduzibel.tex new file mode 100644 index 0000000..6a6991e --- /dev/null +++ b/vorlesungen/slides/6/darstellungen/irreduzibel.tex @@ -0,0 +1,43 @@ +% +% irreduzibel.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Irreduzible Darstellungen} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Definition} +Eine Darstellung $\varrho\colon G\to\operatorname{GL}(V)$ heisst +irreduzibel, wenn es keine Zerlegung von $\varrho$ in zwei +Darstellungen $\varrho_i\colon G\to\operatorname{GL}(U_i)$ ($i=1,2$) +gibt derart, dass $\varrho = \varrho_1\oplus\varrho_2$ +\end{block} +\begin{block}{Isomorphe Darstellungen} +$\varrho_i$ sind {\em isomorphe} Darstellungen in $V_i$ wenn es +$f\colon V_1\overset{\cong}{\to} V_2$ gibt mit +\begin{align*} +f \circ \varrho_i(g)\circ f^{-1} &= \varrho_2(g) +\\ +f \circ \varrho_i(g)\phantom{\mathstrut\circ f^{-1}}&= \varrho_2(g)\circ f +\end{align*} +\end{block} +\end{column} +\begin{column}{0.48\textwidth} +\begin{block}{Lemma von Schur} +$\varrho_i$ zwei irreduzible Darstellungen und $f$ so, dass +$f\circ \varrho_1(g)=\varrho_2(g)\circ f$ für alle $g$. +Dann gilt +\begin{enumerate} +\item $\varrho_i$ nicht isomorph $\Rightarrow$ $f=0$ +\item $V_1=V_2$ $\Rightarrow$ $f=\lambda I$ +\end{enumerate} +\end{block} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/6/darstellungen/schur.tex b/vorlesungen/slides/6/darstellungen/schur.tex new file mode 100644 index 0000000..69ce9ee --- /dev/null +++ b/vorlesungen/slides/6/darstellungen/schur.tex @@ -0,0 +1,45 @@ +% +% schur.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Folgerungen aus Schurs Lemma} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Mittelung einer Abbildung} +$h\colon V_1\to V_2$ +\[ +h^G = \frac{1}{|G|} \sum_{g\in G} \varrho_2(g)^{-1} \circ f \circ \varrho_1(g) +\] +\begin{enumerate} +\item $\varrho_i$ nicht isomorph $\Rightarrow$ $h^G=0$ +\item $V_1=V_2$, $h^G = \frac1n\operatorname{Spur}h$ +\end{enumerate} +\end{block} +\begin{block}{Matrixelemente für $\varrho_i$ nicht isomorph} +$\varrho_i$ nicht isomorph, dann ist +\[ +\frac{1}{|G|} \sum_{g\in G} \varrho_1(g^{-1})_{kl}\varrho_2(g)_{uv}=0 +\] +für alle $k,l,u,v$ +\end{block} +\end{column} +\begin{column}{0.48\textwidth} +\begin{block}{Matrixelemente $V_1=V_2$, $\varrho_i$ iso} +F¨r $k=v$ und $l=u$ gilt +\[ +\frac{1}{|G|} \sum_{g\in G} \varrho_1(g^{-1})_{kl} \varrho_2(g)_{uv} += +\frac1n +\] +und $=0$ sonst +\end{block} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/6/darstellungen/skalarprodukt.tex b/vorlesungen/slides/6/darstellungen/skalarprodukt.tex new file mode 100644 index 0000000..653bdce --- /dev/null +++ b/vorlesungen/slides/6/darstellungen/skalarprodukt.tex @@ -0,0 +1,39 @@ +% +% skalarprodukt.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Skalarprodukt} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Definition des Skalarproduktes} +$\varphi$, $\psi$ komplexe Funktionen auf $G$: +\[ +\langle \varphi,\psi\rangle += +\frac{1}{|G|} \sum_{g\in G} \overline{\varphi(g)} \psi(g) +\] +\end{block} +\end{column} +\begin{column}{0.48\textwidth} +\begin{block}{Satz} +\begin{enumerate} +\item +$\chi$ der Charakter einer irrediziblen Darstellung +$\Rightarrow$ $\langle \chi,\chi\rangle=1$. +\item +$\chi$ und $\chi'$ Charaktere nichtisomorpher Darstellungen +$\Rightarrow$ +$\langle \chi,\chi'\rangle=0$ +\end{enumerate} +D.~h.~Charaktere irreduzibler Darstellungen sind orthonormiert +\end{block} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/6/darstellungen/summe.tex b/vorlesungen/slides/6/darstellungen/summe.tex new file mode 100644 index 0000000..9152e1f --- /dev/null +++ b/vorlesungen/slides/6/darstellungen/summe.tex @@ -0,0 +1,82 @@ +% +% Summe.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Direkte Summe} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Gegeben} +Gegeben zwei Darstellungen +\begin{align*} +\varrho_1&\colon G \to \mathbb{C}^{n_1} +\\ +\varrho_2&\colon G \to \mathbb{C}^{n_2} +\end{align*} +\end{block} +\vspace{-12pt} +\begin{block}{Direkte Summe der Darstellungen} +\vspace{-12pt} +\begin{align*} +\varrho_1\oplus\varrho_2 +&\colon +G\to \mathbb{C}^{n_1+n_2} = \mathbb{C}^{n_1}\times\mathbb{C}^{n_2} +=: +\mathbb{C}^{n_1}\oplus\mathbb{C}^{n_2} +\\ +&\colon g\mapsto (\varrho_1(g),\varrho_2(g)) +\end{align*} +\end{block} +\vspace{-12pt} +\begin{block}{Charakter} +\vspace{-12pt} +\begin{align*} +\chi_{\varrho_1\oplus\varrho_2}(g) +&= +\operatorname{Spur}(\varrho_1\oplus\varrho_2)(g) +\\ +&= +\operatorname{Spur}{\varrho_1(g)} ++ +\operatorname{Spur}{\varrho_1(g)} +\\ +&= +\chi_{\varrho_1}(g) ++ +\chi_{\varrho_2}(g) +\end{align*} +\end{block} +\end{column} +\begin{column}{0.48\textwidth} +\begin{block}{Tensorprodukt} +$n_1\times n_2$-dimensionale +Darstellung $\varrho_1\otimes\varrho_2$ mit Matrix +\[ +\begin{pmatrix} +\varrho_1(g)_{11} \varrho_2(g) + &\dots + &\varrho_1(g)_{1n_1} \varrho_2(g)\\ +\vdots&\ddots&\vdots\\ +\varrho_1(g)_{n_11} \varrho_2(g) + &\dots + &\varrho_1(g)_{n_1n_1} \varrho_2(g) +\end{pmatrix} +\] +Die ``Einträge'' sind $n_2\times n_2$-Blöcke +\end{block} +\begin{block}{Darstellungsring} +Die Menge der Darstellungen $R(G)$ einer Gruppe hat +einer Ringstruktur mit $\oplus$ und $\otimes$ +\\ +$\Rightarrow$ +Algebra zum Studium der möglichen Darstellungen von $G$ verwenden +\end{block} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/6/darstellungen/zyklisch.tex b/vorlesungen/slides/6/darstellungen/zyklisch.tex new file mode 100644 index 0000000..6e36d1d --- /dev/null +++ b/vorlesungen/slides/6/darstellungen/zyklisch.tex @@ -0,0 +1,77 @@ +% +% zyklisch.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Beispiel: Zyklische Gruppen} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Gruppe} +\( +C_n = \mathbb{Z}/n\mathbb{Z} +\) +\end{block} +\begin{block}{Darstellungen von $C_n$} +Gegeben durch $\varrho_k(1)=e^{2\pi i k/n}$, +\[ +\varrho_k(l) = e^{2\pi ikl/n} +\] +\end{block} +\vspace{-10pt} +\begin{block}{Charaktere} +\vspace{-10pt} +\[ +\chi_k(l) = e^{2\pi ikl/n} +\] +haben Skalarprodukte +\[ +\langle \chi_k,\chi_{k'}\rangle += +\begin{cases} +1&\quad k= k'\\ +0&\quad\text{sonst} +\end{cases} +\] +Die Darstellungen $\chi_k$ sind nicht isomorph +\end{block} +\end{column} +\begin{column}{0.48\textwidth} +\begin{block}{Orthonormalbasis} +Die Funktionen $\chi_k$ bilden eine Orthonormalbasis von $L^2(C_n)$ +\end{block} +\vspace{-4pt} +\begin{block}{Analyse einer Darstellung} +$\varrho\colon C_n\to \mathbb{C}^n$ eine Darstellung, +$\chi_\varrho$ der Charakter lässt zerlegen: +\begin{align*} +c_k +&= +\langle \chi_k, \chi\rangle = \frac{1}{n} \sum_{l} \chi_k(l) e^{-2\pi ilk/n} +\\ +\chi(l) +&= +\sum_{k} c_k \chi_k += +\sum_{k} c_k e^{2\pi ikl/n} +\end{align*} +\end{block} +\vspace{-13pt} +\begin{block}{Fourier-Theorie} +\vspace{-3pt} +\begin{center} +\begin{tabular}{>{$}l<{$}l} +C_n&Diskrete Fourier-Theorie\\ +U(1)&Fourier-Reihen\\ +\mathbb{R}&Fourier-Integral +\end{tabular} +\end{center} +\end{block} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/6/permutationen/matrizen.tex b/vorlesungen/slides/6/permutationen/matrizen.tex new file mode 100644 index 0000000..346993d --- /dev/null +++ b/vorlesungen/slides/6/permutationen/matrizen.tex @@ -0,0 +1,75 @@ +% +% matrizen.tex -- Darstellung der Permutationen als Matrizen +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Permutationsmatrizen} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Permutationsabbildung} +$\sigma\in S_n$ eine Permutation, definiere +\[ +f +\colon +e_i \mapsto e_{\sigma(i)} +\] +($e_i$ Standardbasisvektor) +\end{block} +\begin{block}{Lineare Abbildung} +$f$ kann erweitert werden zu einer linearen Abbildung +\[ +\tilde{f} +\colon +\Bbbk^n \to \Bbbk^n +: +\sum_{k=1}^n a_i e_i +\mapsto +\sum_{k=1}^n a_i f(e_i) +\] +\end{block} +\end{column} +\begin{column}{0.48\textwidth} +\begin{block}{Permutationsmatrix} +Matrix $A_{\tilde{f}}$ der linearen Abbildung $\tilde{f}$ +hat die Matrixelemente +\[ +a_{ij} += +\begin{cases} +1&\qquad i=\sigma(j)\\ +0&\qquad\text{sonst} +\end{cases} +\] +\end{block} +\vspace{-10pt} +\begin{block}{Beispiel} +\vspace{-20pt} +\[ +\begin{pmatrix} +1&2&3&4\\ +3&2&4&1 +\end{pmatrix} +\mapsto +\begin{pmatrix} +0&0&0&1\\ +0&1&0&0\\ +1&0&0&0\\ +0&0&1&0 +\end{pmatrix} +\] +\end{block} +\vspace{-10pt} +\begin{block}{Homomorphismus} +Die Abbildung +$S_n\to\operatorname{GL}(\Bbbk)\colon \sigma \mapsto A_{\tilde{f}}$ +ist ein Homomorphismus +\end{block} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/7/Makefile.inc b/vorlesungen/slides/7/Makefile.inc new file mode 100644 index 0000000..2391099 --- /dev/null +++ b/vorlesungen/slides/7/Makefile.inc @@ -0,0 +1,22 @@ +#
+# Makefile.inc -- additional depencencies
+#
+# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+#
+chapter5 = \
+ ../slides/7/symmetrien.tex \
+ ../slides/7/algebraisch.tex \
+ ../slides/7/parameter.tex \
+ ../slides/7/mannigfaltigkeit.tex \
+ ../slides/7/sl2.tex \
+ ../slides/7/drehung.tex \
+ ../slides/7/drehanim.tex \
+ ../slides/7/semi.tex \
+ ../slides/7/kurven.tex \
+ ../slides/7/einparameter.tex \
+ ../slides/7/ableitung.tex \
+ ../slides/7/liealgebra.tex \
+ ../slides/7/kommutator.tex \
+ ../slides/7/dg.tex \
+ ../slides/7/chapter.tex
+
diff --git a/vorlesungen/slides/7/ableitung.tex b/vorlesungen/slides/7/ableitung.tex new file mode 100644 index 0000000..5a4b94e --- /dev/null +++ b/vorlesungen/slides/7/ableitung.tex @@ -0,0 +1,68 @@ +%
+% ableitung.tex -- Ableitung in der Lie-Gruppe
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Ableitung in der Matrix-Gruppe}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Ableitung in $\operatorname{O}(n)$}
+\uncover<2->{%
+$s \mapsto A(s)\in\operatorname{O}(n)$
+}
+\begin{align*}
+\uncover<3->{I
+&=
+A(s)^tA(s)}
+\\
+\uncover<4->{0
+=
+\frac{d}{ds} I
+&=
+\frac{d}{ds} (A(s)^t A(s))}
+\\
+&\uncover<5->{=
+\dot{A}(s)^tA(s) + A(s)^t \dot{A}(s)}
+\intertext{\uncover<6->{An der Stelle $s=0$, d.~h.~$A(0)=I$}}
+\uncover<7->{0
+&=
+\dot{A}(0)^t
++
+\dot{A}(0)}
+\\
+\uncover<8->{\Leftrightarrow
+\qquad
+\dot{A}(0)^t &= -\dot{A}(0)}
+\end{align*}
+\uncover<9->{%
+``Tangentialvektoren'' sind antisymmetrische Matrizen
+}
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\begin{block}{Ableitung in $\operatorname{SL}_2(\mathbb{R})$}
+\uncover<2->{%
+$s\mapsto A(s)\in\operatorname{SL}_n(\mathbb{R})$
+}
+\begin{align*}
+\uncover<3->{1 &= \det A(t)}
+\\
+\uncover<10->{0
+=
+\frac{d}{dt}1
+&=
+\frac{d}{dt} \det A(t)}
+\intertext{\uncover<11->{mit dem Entwicklungssatz kann man nachrechnen:}}
+\uncover<12->{0&=\operatorname{Spur}\dot{A}(0)}
+\end{align*}
+\uncover<13->{``Tangentialvektoren'' sind spurlose Matrizen}
+\end{block}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/7/algebraisch.tex b/vorlesungen/slides/7/algebraisch.tex new file mode 100644 index 0000000..fba42cf --- /dev/null +++ b/vorlesungen/slides/7/algebraisch.tex @@ -0,0 +1,115 @@ +%
+% algebraisch.tex -- algebraische Definition der Symmetrien
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Erhaltungsgrössen und Algebra}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Längen und Winkel}
+Längenmessung mit Skalarprodukt
+\begin{align*}
+\|\vec{v}\|^2
+&=
+\langle \vec{v},\vec{v}\rangle
+=
+\vec{v}\cdot \vec{v}
+\uncover<2->{=
+\vec{v}^t\vec{v}}
+\end{align*}
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<3->{%
+\begin{block}{Flächeninhalt/Volumen}
+$n$ Vektoren $V=(\vec{v}_1,\dots,\vec{v}_n)$
+\\
+Volumen des Parallelepipeds: $\det V$
+\end{block}}
+\end{column}
+\end{columns}
+%
+\vspace{-7pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\uncover<4->{%
+\begin{block}{Längenerhaltende Transformationen}
+$A\in\operatorname{GL}_n(\mathbb{R})$
+\begin{align*}
+\vec{x}^t\vec{y}
+&=
+(A\vec{x})
+\cdot
+(A\vec{y})
+\uncover<5->{=
+(A\vec{x})^t
+(A\vec{y})}
+\\
+\uncover<6->{
+\vec{x}^tI\vec{y}
+&=
+\vec{x}^tA^tA\vec{y}}
+\uncover<7->{
+\Rightarrow I=A^tA}
+\end{align*}
+\uncover<8->{Begründung: $\vec{e}_i^t B \vec{e}_j = b_{ij}$}
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<9->{%
+\begin{block}{Volumenerhaltende Transformationen}
+$A\in\operatorname{GL}_n(\mathbb{R})$
+\begin{align*}
+\det(V)
+&=
+\det(AV)
+\uncover<10->{=
+\det(A)\det(V)}
+\\
+\uncover<11->{
+1&=\det(A)}
+\end{align*}
+\uncover<10->{
+(Produktsatz für Determinante)
+}
+\end{block}}
+\end{column}
+\end{columns}
+%
+\vspace{-3pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\uncover<12->{%
+\begin{block}{Orthogonale Matrizen}
+Längentreue Abbildungen = orthogonale Matrizen:
+\[
+O(n)
+=
+\{
+A \in \operatorname{GL}_n(\mathbb{R})
+\;|\;
+A^tA=I
+\}
+\]
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<13->{%
+\begin{block}{``Spezielle'' Matrizen}
+Volumen-/Orientierungserhaltende Transformationen:
+\[
+\operatorname{SL}_n(\mathbb R)
+=
+\{ A \in \operatorname{GL}_n(\mathbb{R}) \;|\; \det A = 1\}
+\]
+\end{block}}
+\end{column}
+\end{columns}
+
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/7/chapter.tex b/vorlesungen/slides/7/chapter.tex new file mode 100644 index 0000000..0f14a9a --- /dev/null +++ b/vorlesungen/slides/7/chapter.tex @@ -0,0 +1,19 @@ +%
+% chapter.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, Hochschule Rapperswi
+%
+\folie{7/symmetrien.tex}
+\folie{7/algebraisch.tex}
+\folie{7/parameter.tex}
+\folie{7/mannigfaltigkeit.tex}
+\folie{7/sl2.tex}
+\folie{7/drehung.tex}
+\folie{7/drehanim.tex}
+\folie{7/semi.tex}
+\folie{7/kurven.tex}
+\folie{7/einparameter.tex}
+\folie{7/ableitung.tex}
+\folie{7/liealgebra.tex}
+\folie{7/kommutator.tex}
+\folie{7/dg.tex}
diff --git a/vorlesungen/slides/7/dg.tex b/vorlesungen/slides/7/dg.tex new file mode 100644 index 0000000..446b2ab --- /dev/null +++ b/vorlesungen/slides/7/dg.tex @@ -0,0 +1,92 @@ +%
+% dg.tex -- Differentialgleichung für die Exponentialabbildung
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Zurück zur Lie-Gruppe}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Tangentialvektor im Punkt $\gamma(t)$}
+Ableitung von $\gamma(t)$ an der Stelle $t$:
+\begin{align*}
+\dot{\gamma}(t)
+&\uncover<2->{=
+\frac{d}{d\tau}\gamma(\tau)\bigg|_{\tau=t}
+}
+\\
+&\uncover<3->{=
+\frac{d}{ds}
+\gamma(t+s)
+\bigg|_{s=0}
+}
+\\
+&\uncover<4->{=
+\frac{d}{ds}
+\gamma(t)\gamma(s)
+\bigg|_{s=0}
+}
+\\
+&\uncover<5->{=
+\gamma(t)
+\frac{d}{ds}
+\gamma(s)
+\bigg|_{s=0}
+}
+\uncover<6->{=
+\gamma(t) \dot{\gamma}(0)
+}
+\end{align*}
+\end{block}
+\vspace{-10pt}
+\uncover<7->{%
+\begin{block}{Differentialgleichung}
+\vspace{-10pt}
+\[
+\dot{\gamma}(t) = \gamma(t) A
+\quad
+\text{mit}
+\quad
+A=\dot{\gamma}(0)\in LG
+\]
+\end{block}}
+\end{column}
+\begin{column}{0.50\textwidth}
+\uncover<8->{%
+\begin{block}{Lösung}
+Exponentialfunktion
+\[
+\exp\colon LG\to G : A \mapsto \exp(At) = \sum_{k=0}^\infty \frac{t^k}{k!}A^k
+\]
+\end{block}}
+\vspace{-5pt}
+\uncover<9->{%
+\begin{block}{Kontrolle: Tangentialvektor berechnen}
+\vspace{-10pt}
+\begin{align*}
+\frac{d}{dt}e^{At}
+&\uncover<10->{=
+\sum_{k=1}^\infty A^k \frac{d}{dt} \frac{t^k}{k!}
+}
+\\
+&\uncover<11->{=
+\sum_{k=1}^\infty A^{k-1}\frac{t^{k-1}}{(k-1)!} A
+}
+\\
+&\uncover<12->{=
+\sum_{k=0} A^k\frac{t^k}{k!}
+A
+}
+\uncover<13->{=
+e^{At} A
+}
+\end{align*}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/7/drehanim.tex b/vorlesungen/slides/7/drehanim.tex new file mode 100644 index 0000000..776617f --- /dev/null +++ b/vorlesungen/slides/7/drehanim.tex @@ -0,0 +1,155 @@ +%
+% template.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+\def\punkt#1#2{ ({\A*(#1)+\B*(#2)},{\C*(#1)+\D*(#2)}) }
+
+\makeatletter
+\hoffset=-2cm
+\advance\textwidth2cm
+\hsize\textwidth
+\columnwidth\textwidth
+\makeatother
+
+\begin{frame}[t,plain]
+\vspace{-5pt}
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+
+\fill[color=white] (-4,-4) rectangle (9,4.5);
+
+\def\a{60}
+
+\pgfmathparse{tan(\a)}
+\xdef\T{\pgfmathresult}
+
+\pgfmathparse{-sin(\a)*cos(\a)}
+\xdef\S{\pgfmathresult}
+
+\pgfmathparse{1/cos(\a)}
+\xdef\E{\pgfmathresult}
+
+\def\N{20}
+\pgfmathparse{2*\N}
+\xdef\Nzwei{\pgfmathresult}
+\pgfmathparse{3*\N}
+\xdef\Ndrei{\pgfmathresult}
+
+\node at (4.2,4.2) [below right] {\begin{minipage}{7cm}
+\begin{block}{$\operatorname{SO}(2)\subset\operatorname{SL}_2(\mathbb{R})$}
+\begin{itemize}
+\item Thus most $A\in\operatorname{SL}_2(\mathbb{R})$ can be parametrized
+as shear mappings and axis rescalings
+\[
+A=
+\begin{pmatrix}d&0\\0&d^{-1}\end{pmatrix}
+\begin{pmatrix}1&s\\0&1\end{pmatrix}
+\begin{pmatrix}1&0\\t&1\end{pmatrix}
+\]
+\item Most rotations can be decomposed into a product of
+shear mappings and axis rescalings
+\end{itemize}
+\end{block}
+\end{minipage}};
+
+\foreach \d in {1,2,...,\Ndrei}{
+ % Scherung in Y-Richtung
+ \ifnum \d>\N
+ \pgfmathparse{\T}
+ \else
+ \pgfmathparse{\T*(\d-1)/(\N-1)}
+ \fi
+ \xdef\t{\pgfmathresult}
+
+ % Scherung in X-Richtung
+ \ifnum \d>\Nzwei
+ \xdef\s{\S}
+ \else
+ \ifnum \d<\N
+ \xdef\s{0}
+ \else
+ \ifnum \d=\N
+ \xdef\s{0}
+ \else
+ \pgfmathparse{\S*(\d-\N-1)/(\N-1)}
+ \xdef\s{\pgfmathresult}
+ \fi
+ \fi
+ \fi
+
+ % Reskalierung der Achsen
+ \ifnum \d>\Nzwei
+ \pgfmathparse{exp(ln(\E)*(\d-2*\N-1)/(\N-1))}
+ \else
+ \pgfmathparse{1}
+ \fi
+ \xdef\e{\pgfmathresult}
+
+ % Matrixelemente
+ \pgfmathparse{(\e)*((\s)*(\t)+1)}
+ \xdef\A{\pgfmathresult}
+
+ \pgfmathparse{(\e)*(\s)}
+ \xdef\B{\pgfmathresult}
+
+ \pgfmathparse{(\t)/(\e)}
+ \xdef\C{\pgfmathresult}
+
+ \pgfmathparse{1/(\e)}
+ \xdef\D{\pgfmathresult}
+
+ \only<\d>{
+ \node at (5.0,-0.9) [below right] {$
+ \begin{aligned}
+ t &= \t \\
+ s &= \s \\
+ d &= \e \\
+ D &= \begin{pmatrix}
+ \A&\B\\
+ \C&\D
+ \end{pmatrix}
+ \qquad
+ \only<60>{\checkmark}
+ \end{aligned}
+ $};
+ }
+
+ \begin{scope}
+ \clip (-4.05,-4.05) rectangle (4.05,4.05);
+ \only<\d>{
+ \foreach \x in {-6,...,6}{
+ \draw[color=blue,line width=0.5pt]
+ \punkt{\x}{-12} -- \punkt{\x}{12};
+ }
+ \foreach \y in {-12,...,12}{
+ \draw[color=darkgreen,line width=0.5pt]
+ \punkt{-6}{\y} -- \punkt{6}{\y};
+ }
+
+ \foreach \r in {1,2,3,4}{
+ \draw[color=red] plot[domain=0:359,samples=360]
+ ({\r*(\A*cos(\x)+\B*sin(\x))},{\r*(\C*cos(\x)+\D*sin(\x))})
+ --
+ cycle;
+ }
+ }
+ \end{scope}
+
+% \uncover<\d>{
+% \node at (5,4) {\d};
+% }
+}
+
+\draw[->] (-4,0) -- (4.2,0) coordinate[label={$x$}];
+\draw[->] (0,-4) -- (0,4.2) coordinate[label={right:$y$}];
+
+\end{tikzpicture}
+\end{center}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/7/drehung.tex b/vorlesungen/slides/7/drehung.tex new file mode 100644 index 0000000..e7b4a92 --- /dev/null +++ b/vorlesungen/slides/7/drehung.tex @@ -0,0 +1,132 @@ +%
+% drehung.tex -- Drehung aus streckungen
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Drehung aus Streckungen und Scherungen}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.38\textwidth}
+\begin{block}{Drehung}
+{\color{blue}Längen}, {\color<2->{blue}Winkel},
+{\color<2->{darkgreen}Orientierung}
+erhalten
+\uncover<2->{
+\[
+\operatorname{SO}(2)
+=
+{\color{blue}\operatorname{O}(2)}
+\cap
+{\color{darkgreen}\operatorname{SL}_2(\mathbb{R})}
+\]}
+\vspace{-20pt}
+\end{block}
+\uncover<3->{%
+\begin{block}{Zusammensetzung}
+Eine Drehung muss als Zusammensetzung geschrieben werden können:
+\[
+D_{\alpha}
+=
+\begin{pmatrix}
+\cos\alpha & -\sin\alpha\\
+\sin\alpha &\phantom{-}\cos\alpha
+\end{pmatrix}
+=
+DST
+\]
+\end{block}}
+\vspace{-10pt}
+\uncover<12->{%
+\begin{block}{Beispiel}
+\vspace{-12pt}
+\[
+D_{60^\circ}
+=
+{\tiny
+\begin{pmatrix}2&0\\0&\frac12\end{pmatrix}
+\begin{pmatrix}1&-\frac{\sqrt{3}}4\\0&1\end{pmatrix}
+\begin{pmatrix}1&0\\\sqrt{3}&1\end{pmatrix}
+}
+\]
+\end{block}}
+\end{column}
+\begin{column}{0.58\textwidth}
+\uncover<4->{%
+\begin{block}{Ansatz}
+\vspace{-12pt}
+\begin{align*}
+DST
+&=
+\begin{pmatrix}
+c^{-1}&0\\
+ 0 &c
+\end{pmatrix}
+\begin{pmatrix}
+1&-s\\
+0&1
+\end{pmatrix}
+\begin{pmatrix}
+1&0\\
+t&1
+\end{pmatrix}
+\\
+&\uncover<5->{=
+\begin{pmatrix}
+c^{-1}&0\\
+ 0 &c
+\end{pmatrix}
+\begin{pmatrix}
+1-st&-s\\
+ t& 1
+\end{pmatrix}
+}
+\\
+&\uncover<6->{=
+\begin{pmatrix}
+{\color<11->{orange}(1-st)c^{-1}}&{\color<10->{darkgreen}sc^{-1}}\\
+{\color<9->{blue}ct}&{\color<8->{red}c}
+\end{pmatrix}}
+\uncover<7->{=
+\begin{pmatrix}
+{\color<11->{orange}\cos\alpha} & {\color<10->{darkgreen}- \sin\alpha} \\
+{\color<9->{blue}\sin\alpha} & \phantom{-} {\color<8->{red}\cos\alpha}
+\end{pmatrix}}
+\end{align*}
+\end{block}}
+\vspace{-10pt}
+\uncover<7->{%
+\begin{block}{Koeffizientenvergleich}
+\vspace{-15pt}
+\begin{align*}
+\uncover<8->{
+{\color{red} c}
+&=
+{\color{red}\cos\alpha }}
+&&
+&
+\uncover<9->{
+{\color{blue}
+t}&=\rlap{$\displaystyle\frac{\sin\alpha}{c} = \tan\alpha$}}\\
+\uncover<10->{
+{\color{darkgreen}sc^{-1}}&={\color{darkgreen}-\sin\alpha}
+&
+&\Rightarrow&
+{\color{darkgreen}s}&={\color{darkgreen}-\sin\alpha}\cos\alpha
+}
+\\
+\uncover<11->{
+{\color{orange} (1-st)c^{-t}}
+&=
+\rlap{$\displaystyle\frac{(1-\sin^2\alpha)}{\cos\alpha} = \cos\alpha $}
+}
+\end{align*}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/7/einparameter.tex b/vorlesungen/slides/7/einparameter.tex new file mode 100644 index 0000000..e9699a6 --- /dev/null +++ b/vorlesungen/slides/7/einparameter.tex @@ -0,0 +1,93 @@ +%
+% einparameter.tex -- Einparameter Untergruppen
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Einparameter-Untergruppen}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Definition}
+Eine Kurve $\gamma\colon \mathbb{R}\to G\subset\operatorname{GL}_n(\mathbb{R})$,
+die {\color<2->{red}gleichzeitig eine Untergruppe von $G$} ist \uncover<3->{mit}
+\[
+\uncover<3->{
+\gamma(t+s) = \gamma(t)\gamma(s)\quad\forall t,s\in\mathbb{R}
+}
+\]
+\end{block}
+\uncover<4->{%
+\begin{block}{Drehungen}
+Drehmatrizen bilden Einparameter- Untergruppen
+\begin{align*}
+t \mapsto D_{x,t}
+&=
+\begin{pmatrix}
+1&0&0\\
+0&\cos t&-\sin t\\
+0&\sin t& \cos t
+\end{pmatrix}
+\\
+D_{x,t}D_{x,s}
+&=
+D_{x,t+s}
+\end{align*}
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<5->{%
+\begin{block}{Scherungen in $\operatorname{SL}_2(\mathbb{R})$}
+\vspace{-12pt}
+\[
+\begin{pmatrix}
+1&s\\
+0&1
+\end{pmatrix}
+\begin{pmatrix}
+1&t\\
+0&1
+\end{pmatrix}
+=
+\begin{pmatrix}
+1&s+t\\
+0&1
+\end{pmatrix}
+\]
+\end{block}}
+\vspace{-12pt}
+\uncover<6->{%
+\begin{block}{Skalierungen in $\operatorname{SL}_2(\mathbb{R})$}
+\vspace{-12pt}
+\[
+\begin{pmatrix}
+e^s&0\\0&e^{-s}
+\end{pmatrix}
+\begin{pmatrix}
+e^t&0\\0&e^{-t}
+\end{pmatrix}
+=
+\begin{pmatrix}
+e^{t+s}&0\\0&e^{-(t+s)}
+\end{pmatrix}
+\]
+\end{block}}
+\vspace{-12pt}
+\uncover<7->{%
+\begin{block}{Gemischt}
+\vspace{-12pt}
+\begin{gather*}
+A_t = I \cosh t + \begin{pmatrix}1&a\\0&-1\end{pmatrix}\sinh t
+\\
+\text{dank}\quad
+\begin{pmatrix}1&s\\0&-1\end{pmatrix}^2
+=I
+\end{gather*}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/7/images/Makefile b/vorlesungen/slides/7/images/Makefile new file mode 100644 index 0000000..9de1c34 --- /dev/null +++ b/vorlesungen/slides/7/images/Makefile @@ -0,0 +1,19 @@ +#
+# Makefile -- Illustrationen zu
+#
+# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+#
+all: rodriguez.jpg
+
+rodriguez.png: rodriguez.pov
+ povray +A0.1 -W1920 -H1080 -Orodriguez.png rodriguez.pov
+
+rodriguez.jpg: rodriguez.png
+ convert -extract 1740x1070+135+10 rodriguez.png rodriguez.jpg
+
+commutator: commutator.ini commutator.pov common.inc
+ povray +A0.1 -W1920 -H1080 -Oc/c.png commutator.ini
+jpg:
+ for f in c/c*.png; do convert $${f} c/`basename $${f} .png`.jpg; done
+
+
diff --git a/vorlesungen/slides/7/images/c/c01.jpg b/vorlesungen/slides/7/images/c/c01.jpg Binary files differnew file mode 100644 index 0000000..b2dbdb2 --- /dev/null +++ b/vorlesungen/slides/7/images/c/c01.jpg diff --git a/vorlesungen/slides/7/images/c/c02.jpg b/vorlesungen/slides/7/images/c/c02.jpg Binary files differnew file mode 100644 index 0000000..9b45ba3 --- /dev/null +++ b/vorlesungen/slides/7/images/c/c02.jpg diff --git a/vorlesungen/slides/7/images/c/c03.jpg b/vorlesungen/slides/7/images/c/c03.jpg Binary files differnew file mode 100644 index 0000000..882be40 --- /dev/null +++ b/vorlesungen/slides/7/images/c/c03.jpg diff --git a/vorlesungen/slides/7/images/c/c04.jpg b/vorlesungen/slides/7/images/c/c04.jpg Binary files differnew file mode 100644 index 0000000..5d26572 --- /dev/null +++ b/vorlesungen/slides/7/images/c/c04.jpg diff --git a/vorlesungen/slides/7/images/c/c05.jpg b/vorlesungen/slides/7/images/c/c05.jpg Binary files differnew file mode 100644 index 0000000..458f565 --- /dev/null +++ b/vorlesungen/slides/7/images/c/c05.jpg diff --git a/vorlesungen/slides/7/images/c/c06.jpg b/vorlesungen/slides/7/images/c/c06.jpg Binary files differnew file mode 100644 index 0000000..cd40cda --- /dev/null +++ b/vorlesungen/slides/7/images/c/c06.jpg diff --git a/vorlesungen/slides/7/images/c/c07.jpg b/vorlesungen/slides/7/images/c/c07.jpg Binary files differnew file mode 100644 index 0000000..3349795 --- /dev/null +++ b/vorlesungen/slides/7/images/c/c07.jpg diff --git a/vorlesungen/slides/7/images/c/c08.jpg b/vorlesungen/slides/7/images/c/c08.jpg Binary files differnew file mode 100644 index 0000000..65048cf --- /dev/null +++ b/vorlesungen/slides/7/images/c/c08.jpg diff --git a/vorlesungen/slides/7/images/c/c09.jpg b/vorlesungen/slides/7/images/c/c09.jpg Binary files differnew file mode 100644 index 0000000..000d502 --- /dev/null +++ b/vorlesungen/slides/7/images/c/c09.jpg diff --git a/vorlesungen/slides/7/images/c/c10.jpg b/vorlesungen/slides/7/images/c/c10.jpg Binary files differnew file mode 100644 index 0000000..064c96b --- /dev/null +++ b/vorlesungen/slides/7/images/c/c10.jpg diff --git a/vorlesungen/slides/7/images/c/c11.jpg b/vorlesungen/slides/7/images/c/c11.jpg Binary files differnew file mode 100644 index 0000000..c67bc5d --- /dev/null +++ b/vorlesungen/slides/7/images/c/c11.jpg diff --git a/vorlesungen/slides/7/images/c/c12.jpg b/vorlesungen/slides/7/images/c/c12.jpg Binary files differnew file mode 100644 index 0000000..f2174de --- /dev/null +++ b/vorlesungen/slides/7/images/c/c12.jpg diff --git a/vorlesungen/slides/7/images/c/c13.jpg b/vorlesungen/slides/7/images/c/c13.jpg Binary files differnew file mode 100644 index 0000000..3cb5ae6 --- /dev/null +++ b/vorlesungen/slides/7/images/c/c13.jpg diff --git a/vorlesungen/slides/7/images/c/c14.jpg b/vorlesungen/slides/7/images/c/c14.jpg Binary files differnew file mode 100644 index 0000000..6985e4f --- /dev/null +++ b/vorlesungen/slides/7/images/c/c14.jpg diff --git a/vorlesungen/slides/7/images/c/c15.jpg b/vorlesungen/slides/7/images/c/c15.jpg Binary files differnew file mode 100644 index 0000000..5bb5aed --- /dev/null +++ b/vorlesungen/slides/7/images/c/c15.jpg diff --git a/vorlesungen/slides/7/images/c/c16.jpg b/vorlesungen/slides/7/images/c/c16.jpg Binary files differnew file mode 100644 index 0000000..cc77fa1 --- /dev/null +++ b/vorlesungen/slides/7/images/c/c16.jpg diff --git a/vorlesungen/slides/7/images/c/c17.jpg b/vorlesungen/slides/7/images/c/c17.jpg Binary files differnew file mode 100644 index 0000000..a60e2e9 --- /dev/null +++ b/vorlesungen/slides/7/images/c/c17.jpg diff --git a/vorlesungen/slides/7/images/c/c18.jpg b/vorlesungen/slides/7/images/c/c18.jpg Binary files differnew file mode 100644 index 0000000..1d08c29 --- /dev/null +++ b/vorlesungen/slides/7/images/c/c18.jpg diff --git a/vorlesungen/slides/7/images/c/c19.jpg b/vorlesungen/slides/7/images/c/c19.jpg Binary files differnew file mode 100644 index 0000000..9210c60 --- /dev/null +++ b/vorlesungen/slides/7/images/c/c19.jpg diff --git a/vorlesungen/slides/7/images/c/c20.jpg b/vorlesungen/slides/7/images/c/c20.jpg Binary files differnew file mode 100644 index 0000000..8951883 --- /dev/null +++ b/vorlesungen/slides/7/images/c/c20.jpg diff --git a/vorlesungen/slides/7/images/c/c21.jpg b/vorlesungen/slides/7/images/c/c21.jpg Binary files differnew file mode 100644 index 0000000..5169c7e --- /dev/null +++ b/vorlesungen/slides/7/images/c/c21.jpg diff --git a/vorlesungen/slides/7/images/c/c22.jpg b/vorlesungen/slides/7/images/c/c22.jpg Binary files differnew file mode 100644 index 0000000..bdeb90b --- /dev/null +++ b/vorlesungen/slides/7/images/c/c22.jpg diff --git a/vorlesungen/slides/7/images/c/c23.jpg b/vorlesungen/slides/7/images/c/c23.jpg Binary files differnew file mode 100644 index 0000000..fa3eac7 --- /dev/null +++ b/vorlesungen/slides/7/images/c/c23.jpg diff --git a/vorlesungen/slides/7/images/c/c24.jpg b/vorlesungen/slides/7/images/c/c24.jpg Binary files differnew file mode 100644 index 0000000..52adc13 --- /dev/null +++ b/vorlesungen/slides/7/images/c/c24.jpg diff --git a/vorlesungen/slides/7/images/c/c25.jpg b/vorlesungen/slides/7/images/c/c25.jpg Binary files differnew file mode 100644 index 0000000..d557497 --- /dev/null +++ b/vorlesungen/slides/7/images/c/c25.jpg diff --git a/vorlesungen/slides/7/images/c/c26.jpg b/vorlesungen/slides/7/images/c/c26.jpg Binary files differnew file mode 100644 index 0000000..f825f49 --- /dev/null +++ b/vorlesungen/slides/7/images/c/c26.jpg diff --git a/vorlesungen/slides/7/images/c/c27.jpg b/vorlesungen/slides/7/images/c/c27.jpg Binary files differnew file mode 100644 index 0000000..0de6c3e --- /dev/null +++ b/vorlesungen/slides/7/images/c/c27.jpg diff --git a/vorlesungen/slides/7/images/c/c28.jpg b/vorlesungen/slides/7/images/c/c28.jpg Binary files differnew file mode 100644 index 0000000..d9f89a4 --- /dev/null +++ b/vorlesungen/slides/7/images/c/c28.jpg diff --git a/vorlesungen/slides/7/images/c/c29.jpg b/vorlesungen/slides/7/images/c/c29.jpg Binary files differnew file mode 100644 index 0000000..937f692 --- /dev/null +++ b/vorlesungen/slides/7/images/c/c29.jpg diff --git a/vorlesungen/slides/7/images/c/c30.jpg b/vorlesungen/slides/7/images/c/c30.jpg Binary files differnew file mode 100644 index 0000000..45901cc --- /dev/null +++ b/vorlesungen/slides/7/images/c/c30.jpg diff --git a/vorlesungen/slides/7/images/c/c31.jpg b/vorlesungen/slides/7/images/c/c31.jpg Binary files differnew file mode 100644 index 0000000..eb52bec --- /dev/null +++ b/vorlesungen/slides/7/images/c/c31.jpg diff --git a/vorlesungen/slides/7/images/c/c32.jpg b/vorlesungen/slides/7/images/c/c32.jpg Binary files differnew file mode 100644 index 0000000..a011640 --- /dev/null +++ b/vorlesungen/slides/7/images/c/c32.jpg diff --git a/vorlesungen/slides/7/images/c/c33.jpg b/vorlesungen/slides/7/images/c/c33.jpg Binary files differnew file mode 100644 index 0000000..ecbb8bd --- /dev/null +++ b/vorlesungen/slides/7/images/c/c33.jpg diff --git a/vorlesungen/slides/7/images/c/c34.jpg b/vorlesungen/slides/7/images/c/c34.jpg Binary files differnew file mode 100644 index 0000000..8a624d1 --- /dev/null +++ b/vorlesungen/slides/7/images/c/c34.jpg diff --git a/vorlesungen/slides/7/images/c/c35.jpg b/vorlesungen/slides/7/images/c/c35.jpg Binary files differnew file mode 100644 index 0000000..33765a1 --- /dev/null +++ b/vorlesungen/slides/7/images/c/c35.jpg diff --git a/vorlesungen/slides/7/images/c/c36.jpg b/vorlesungen/slides/7/images/c/c36.jpg Binary files differnew file mode 100644 index 0000000..e38a448 --- /dev/null +++ b/vorlesungen/slides/7/images/c/c36.jpg diff --git a/vorlesungen/slides/7/images/c/c37.jpg b/vorlesungen/slides/7/images/c/c37.jpg Binary files differnew file mode 100644 index 0000000..9f823f4 --- /dev/null +++ b/vorlesungen/slides/7/images/c/c37.jpg diff --git a/vorlesungen/slides/7/images/c/c38.jpg b/vorlesungen/slides/7/images/c/c38.jpg Binary files differnew file mode 100644 index 0000000..19c96fc --- /dev/null +++ b/vorlesungen/slides/7/images/c/c38.jpg diff --git a/vorlesungen/slides/7/images/c/c39.jpg b/vorlesungen/slides/7/images/c/c39.jpg Binary files differnew file mode 100644 index 0000000..c00482b --- /dev/null +++ b/vorlesungen/slides/7/images/c/c39.jpg diff --git a/vorlesungen/slides/7/images/c/c40.jpg b/vorlesungen/slides/7/images/c/c40.jpg Binary files differnew file mode 100644 index 0000000..de9fca4 --- /dev/null +++ b/vorlesungen/slides/7/images/c/c40.jpg diff --git a/vorlesungen/slides/7/images/c/c41.jpg b/vorlesungen/slides/7/images/c/c41.jpg Binary files differnew file mode 100644 index 0000000..1b8a3d1 --- /dev/null +++ b/vorlesungen/slides/7/images/c/c41.jpg diff --git a/vorlesungen/slides/7/images/c/c42.jpg b/vorlesungen/slides/7/images/c/c42.jpg Binary files differnew file mode 100644 index 0000000..6d4e5bc --- /dev/null +++ b/vorlesungen/slides/7/images/c/c42.jpg diff --git a/vorlesungen/slides/7/images/c/c43.jpg b/vorlesungen/slides/7/images/c/c43.jpg Binary files differnew file mode 100644 index 0000000..b39551f --- /dev/null +++ b/vorlesungen/slides/7/images/c/c43.jpg diff --git a/vorlesungen/slides/7/images/c/c44.jpg b/vorlesungen/slides/7/images/c/c44.jpg Binary files differnew file mode 100644 index 0000000..0fe56f6 --- /dev/null +++ b/vorlesungen/slides/7/images/c/c44.jpg diff --git a/vorlesungen/slides/7/images/c/c45.jpg b/vorlesungen/slides/7/images/c/c45.jpg Binary files differnew file mode 100644 index 0000000..9196ad3 --- /dev/null +++ b/vorlesungen/slides/7/images/c/c45.jpg diff --git a/vorlesungen/slides/7/images/c/c46.jpg b/vorlesungen/slides/7/images/c/c46.jpg Binary files differnew file mode 100644 index 0000000..a4f5823 --- /dev/null +++ b/vorlesungen/slides/7/images/c/c46.jpg diff --git a/vorlesungen/slides/7/images/c/c47.jpg b/vorlesungen/slides/7/images/c/c47.jpg Binary files differnew file mode 100644 index 0000000..18474dd --- /dev/null +++ b/vorlesungen/slides/7/images/c/c47.jpg diff --git a/vorlesungen/slides/7/images/c/c48.jpg b/vorlesungen/slides/7/images/c/c48.jpg Binary files differnew file mode 100644 index 0000000..d839014 --- /dev/null +++ b/vorlesungen/slides/7/images/c/c48.jpg diff --git a/vorlesungen/slides/7/images/c/c49.jpg b/vorlesungen/slides/7/images/c/c49.jpg Binary files differnew file mode 100644 index 0000000..3cb5cb0 --- /dev/null +++ b/vorlesungen/slides/7/images/c/c49.jpg diff --git a/vorlesungen/slides/7/images/c/c50.jpg b/vorlesungen/slides/7/images/c/c50.jpg Binary files differnew file mode 100644 index 0000000..de32f8b --- /dev/null +++ b/vorlesungen/slides/7/images/c/c50.jpg diff --git a/vorlesungen/slides/7/images/c/c51.jpg b/vorlesungen/slides/7/images/c/c51.jpg Binary files differnew file mode 100644 index 0000000..4bbc224 --- /dev/null +++ b/vorlesungen/slides/7/images/c/c51.jpg diff --git a/vorlesungen/slides/7/images/c/c52.jpg b/vorlesungen/slides/7/images/c/c52.jpg Binary files differnew file mode 100644 index 0000000..ebf1db6 --- /dev/null +++ b/vorlesungen/slides/7/images/c/c52.jpg diff --git a/vorlesungen/slides/7/images/c/c53.jpg b/vorlesungen/slides/7/images/c/c53.jpg Binary files differnew file mode 100644 index 0000000..2ece537 --- /dev/null +++ b/vorlesungen/slides/7/images/c/c53.jpg diff --git a/vorlesungen/slides/7/images/c/c54.jpg b/vorlesungen/slides/7/images/c/c54.jpg Binary files differnew file mode 100644 index 0000000..0ffbac2 --- /dev/null +++ b/vorlesungen/slides/7/images/c/c54.jpg diff --git a/vorlesungen/slides/7/images/c/c55.jpg b/vorlesungen/slides/7/images/c/c55.jpg Binary files differnew file mode 100644 index 0000000..5f75419 --- /dev/null +++ b/vorlesungen/slides/7/images/c/c55.jpg diff --git a/vorlesungen/slides/7/images/c/c56.jpg b/vorlesungen/slides/7/images/c/c56.jpg Binary files differnew file mode 100644 index 0000000..5c0f9ae --- /dev/null +++ b/vorlesungen/slides/7/images/c/c56.jpg diff --git a/vorlesungen/slides/7/images/c/c57.jpg b/vorlesungen/slides/7/images/c/c57.jpg Binary files differnew file mode 100644 index 0000000..9b61179 --- /dev/null +++ b/vorlesungen/slides/7/images/c/c57.jpg diff --git a/vorlesungen/slides/7/images/c/c58.jpg b/vorlesungen/slides/7/images/c/c58.jpg Binary files differnew file mode 100644 index 0000000..81d2173 --- /dev/null +++ b/vorlesungen/slides/7/images/c/c58.jpg diff --git a/vorlesungen/slides/7/images/c/c59.jpg b/vorlesungen/slides/7/images/c/c59.jpg Binary files differnew file mode 100644 index 0000000..0ae9bac --- /dev/null +++ b/vorlesungen/slides/7/images/c/c59.jpg diff --git a/vorlesungen/slides/7/images/c/c60.jpg b/vorlesungen/slides/7/images/c/c60.jpg Binary files differnew file mode 100644 index 0000000..2bc77e7 --- /dev/null +++ b/vorlesungen/slides/7/images/c/c60.jpg diff --git a/vorlesungen/slides/7/images/common.inc b/vorlesungen/slides/7/images/common.inc new file mode 100644 index 0000000..b028956 --- /dev/null +++ b/vorlesungen/slides/7/images/common.inc @@ -0,0 +1,70 @@ +//
+// common.inc
+//
+// (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+//
+#version 3.7;
+#include "colors.inc"
+
+global_settings {
+ assumed_gamma 1
+}
+
+#declare imagescale = 0.025;
+#declare O = <0, 0, 0>;
+#declare at = 0.015;
+
+camera {
+ location <18, 15, -50>
+ look_at <0.0, 0.5, 0>
+ right 16/9 * x * imagescale
+ up y * imagescale
+}
+
+light_source {
+ <-40, 30, -50> color White
+ area_light <1,0,0> <0,0,1>, 10, 10
+ adaptive 1
+ jitter
+}
+
+sky_sphere {
+ pigment {
+ color rgb<1,1,1>
+ }
+}
+
+#macro arrow(from, to, arrowthickness, c)
+#declare arrowdirection = vnormalize(to - from);
+#declare arrowlength = vlength(to - from);
+union {
+ sphere {
+ from, 1.1 * arrowthickness
+ }
+ cylinder {
+ from,
+ from + (arrowlength - 5 * arrowthickness) * arrowdirection,
+ arrowthickness
+ }
+ cone {
+ from + (arrowlength - 5 * arrowthickness) * arrowdirection,
+ 2 * arrowthickness,
+ to,
+ 0
+ }
+ pigment {
+ color c
+ }
+ finish {
+ specular 0.9
+ metallic
+ }
+}
+#end
+
+#declare l = 1.2;
+
+arrow(< -l, 0, 0 >, < l, 0, 0 >, at, White)
+arrow(< 0, 0, -l >, < 0, 0, l >, at, White)
+arrow(< 0, -l, 0 >, < 0, l, 0 >, at, White)
+
diff --git a/vorlesungen/slides/7/images/commutator.ini b/vorlesungen/slides/7/images/commutator.ini new file mode 100644 index 0000000..44a5ac5 --- /dev/null +++ b/vorlesungen/slides/7/images/commutator.ini @@ -0,0 +1,8 @@ +Input_File_Name=commutator.pov
+Initial_Frame=1
+Final_Frame=60
+Initial_Clock=1
+Final_Clock=60
+Cyclic_Animation=off
+Pause_when_Done=off
+
diff --git a/vorlesungen/slides/7/images/commutator.m b/vorlesungen/slides/7/images/commutator.m new file mode 100644 index 0000000..3f5ea17 --- /dev/null +++ b/vorlesungen/slides/7/images/commutator.m @@ -0,0 +1,111 @@ +#
+# commutator.m
+#
+# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+#
+
+X = [
+ 0, 0, 0;
+ 0, 0, -1;
+ 0, 1, 0
+];
+
+Y = [
+ 0, 0, 1;
+ 0, 0, 0;
+ -1, 0, 0
+];
+
+Z = [
+ 0, -1, 0;
+ 1, 0, 0;
+ 0, 0, 0
+];
+
+function retval = Dx(alpha)
+ retval = [
+ 1, 0, 0 ;
+ 0, cos(alpha), -sin(alpha);
+ 0, sin(alpha), cos(alpha)
+ ];
+end
+
+function retval = Dy(beta)
+ retval = [
+ cos(beta), 0, sin(beta);
+ 0, 1, 0 ;
+ -sin(beta), 0, cos(beta)
+ ];
+end
+
+t = 0.9;
+P = Dx(t) * Dy(t)
+Q = Dy(t) * Dx(t)
+P - Q
+(P - Q) * [0;0;1]
+
+function retval = kurven(filename, t)
+ retval = -1;
+ N = 20;
+ fn = fopen(filename, "w");
+ fprintf(fn, "//\n");
+ fprintf(fn, "// %s\n", filename);
+ fprintf(fn, "//\n");
+ fprintf(fn, "#macro XYkurve()\n");
+ for i = (0:N-1)
+ v1 = Dx(t * i / N) * [0;0;1];
+ v2 = Dx(t * (i+1) / N) * [0;0;1];
+ fprintf(fn, "sphere { <%.4f,%.4f,%.4f>, at }\n",
+ v1(1,1), v1(3,1), v1(2,1));
+ fprintf(fn, "cylinder { <%.4f,%.4f,%.4f>, <%.4f, %.4f, %.4f>, at }\n",
+ v1(1,1), v1(3,1), v1(2,1), v2(1,1), v2(3,1), v2(2,1));
+ end
+ for i = (0:N-1)
+ v1 = Dx(t) * Dy(t * i / N) * [0;0;1];
+ v2 = Dx(t) * Dy(t * (i+1) / N) * [0;0;1];
+ fprintf(fn, "sphere { <%.4f,%.4f,%.4f>, at }\n",
+ v1(1,1), v1(3,1), v1(2,1));
+ fprintf(fn, "cylinder { <%.4f,%.4f,%.4f>, <%.4f, %.4f, %.4f>, at }\n",
+ v1(1,1), v1(3,1), v1(2,1), v2(1,1), v2(3,1), v2(2,1));
+ end
+ fprintf(fn, "sphere { <%.4f,%.4f,%.4f>, at }\n",
+ v2(1,1), v2(3,1), v2(2,1));
+ fprintf(fn, "#end\n");
+ fprintf(fn, "#declare finalXY = <%.4f, %.4f, %.4f>;\n",
+ v2(1,1), v2(3,1), v2(2,1));
+ fprintf(fn, "#macro YXkurve()\n");
+ for i = (0:N-1)
+ v1 = Dy(t * i / N) * [0;0;1];
+ v2 = Dy(t * (i+1) / N) * [0;0;1];
+ fprintf(fn, "sphere { <%.4f,%.4f,%.4f>, at }\n",
+ v1(1,1), v1(3,1), v1(2,1));
+ fprintf(fn, "cylinder { <%.4f,%.4f,%.4f>, <%.4f, %.4f, %.4f>, at }\n",
+ v1(1,1), v1(3,1), v1(2,1), v2(1,1), v2(3,1), v2(2,1));
+ end
+ for i = (0:N-1)
+ v1 = Dy(t) * Dx(t * i / N) * [0;0;1];
+ v2 = Dy(t) * Dx(t * (i+1) / N) * [0;0;1];
+ fprintf(fn, "sphere { <%.4f,%.4f,%.4f>, at }\n",
+ v1(1,1), v1(3,1), v1(2,1));
+ fprintf(fn, "cylinder { <%.4f,%.4f,%.4f>, <%.4f, %.4f, %.4f>, at }\n",
+ v1(1,1), v1(3,1), v1(2,1), v2(1,1), v2(3,1), v2(2,1));
+ end
+ fprintf(fn, "sphere { <%.4f,%.4f,%.4f>, at }\n",
+ v2(1,1), v2(3,1), v2(2,1));
+ fprintf(fn, "#end\n");
+ fprintf(fn, "#declare finalYX = <%.4f, %.4f, %.4f>;\n",
+ v2(1,1), v2(3,1), v2(2,1));
+
+ fclose(fn);
+ retval = 0;
+end
+
+function retval = kurve(i)
+ n = pi / 180;
+ filename = sprintf("f/%04d.inc", i);
+ kurven(filename, n * i);
+end
+
+for i = (1:60)
+ kurve(i);
+end
diff --git a/vorlesungen/slides/7/images/commutator.pov b/vorlesungen/slides/7/images/commutator.pov new file mode 100644 index 0000000..8229a06 --- /dev/null +++ b/vorlesungen/slides/7/images/commutator.pov @@ -0,0 +1,59 @@ +//
+// commutator.pov
+//
+// (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+//
+#include "common.inc"
+
+sphere { O, 0.99
+ pigment {
+ color rgbt<1,1,1,0.5>
+ }
+ finish {
+ specular 0.9
+ metallic
+ }
+}
+
+#declare filename = concat("f/", str(clock, -4, 0), ".inc");
+
+#include filename
+
+#declare n1 = vcross(<0,1,0>, finalXY);
+#declare n2 = vcross(<0,1,0>, finalYX);
+
+intersection {
+ sphere { O, 1 }
+ plane { -n1, 0 }
+ plane { n2, 0 }
+ pigment {
+ color rgb<0,0.4,0.1>
+ }
+ finish {
+ specular 0.9
+ metallic
+ }
+}
+
+union {
+ XYkurve()
+ pigment {
+ color Red
+ }
+ finish {
+ specular 0.9
+ metallic
+ }
+}
+
+union {
+ YXkurve()
+ pigment {
+ color Blue
+ }
+ finish {
+ specular 0.9
+ metallic
+ }
+}
+
diff --git a/vorlesungen/slides/7/images/rodriguez.jpg b/vorlesungen/slides/7/images/rodriguez.jpg Binary files differnew file mode 100644 index 0000000..5c49700 --- /dev/null +++ b/vorlesungen/slides/7/images/rodriguez.jpg diff --git a/vorlesungen/slides/7/images/rodriguez.png b/vorlesungen/slides/7/images/rodriguez.png Binary files differnew file mode 100644 index 0000000..6d9e9e4 --- /dev/null +++ b/vorlesungen/slides/7/images/rodriguez.png diff --git a/vorlesungen/slides/7/images/rodriguez.pov b/vorlesungen/slides/7/images/rodriguez.pov new file mode 100644 index 0000000..62306f8 --- /dev/null +++ b/vorlesungen/slides/7/images/rodriguez.pov @@ -0,0 +1,118 @@ +//
+// rodriguez.pov
+//
+// (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+//
+#version 3.7;
+#include "colors.inc"
+
+global_settings {
+ assumed_gamma 1
+}
+
+#declare imagescale = 0.020;
+#declare O = <0, 0, 0>;
+#declare at = 0.015;
+
+camera {
+ location <8, 15, -50>
+ look_at <0.1, 0.475, 0>
+ right 16/9 * x * imagescale
+ up y * imagescale
+}
+
+light_source {
+ <-4, 20, -50> color White
+ area_light <1,0,0> <0,0,1>, 10, 10
+ adaptive 1
+ jitter
+}
+
+sky_sphere {
+ pigment {
+ color rgb<1,1,1>
+ }
+}
+
+#macro arrow(from, to, arrowthickness, c)
+#declare arrowdirection = vnormalize(to - from);
+#declare arrowlength = vlength(to - from);
+union {
+ sphere {
+ from, 1.1 * arrowthickness
+ }
+ cylinder {
+ from,
+ from + (arrowlength - 5 * arrowthickness) * arrowdirection,
+ arrowthickness
+ }
+ cone {
+ from + (arrowlength - 5 * arrowthickness) * arrowdirection,
+ 2 * arrowthickness,
+ to,
+ 0
+ }
+ pigment {
+ color c
+ }
+ finish {
+ specular 0.9
+ metallic
+ }
+}
+#end
+
+#declare K = vnormalize(<0.2,1,0.1>);
+#declare X = vnormalize(<1.1,1,-1.2>);
+#declare O = <0,0,0>;
+
+#declare r = vlength(vcross(K, X)) / vlength(K);
+
+#declare l = 1.0;
+
+arrow(< -l, 0, 0 >, < l, 0, 0 >, at, White)
+arrow(< 0, 0, -l >, < 0, 0, l >, at, White)
+arrow(< 0, -l, 0 >, < 0, l, 0 >, at, White)
+
+arrow(O, X, at, Red)
+arrow(O, K, at, Blue)
+
+#macro punkt(H,phi)
+ ((H-vdot(K,H)*K)*cos(phi) + vcross(K,H)*sin(phi) + vdot(K,X)*K)
+#end
+
+cone { vdot(K, X) * K, r, O, 0
+ pigment {
+ color rgbt<0.6,0.6,0.6,0.5>
+ }
+ finish {
+ specular 0.9
+ metallic
+ }
+}
+
+
+union {
+ #declare phistep = pi / 100;
+ #declare phi = 0;
+ #while (phi < 2 * pi - phistep/2)
+ sphere { punkt(K, phi), at/2 }
+ cylinder {
+ punkt(X, phi),
+ punkt(X, phi + phistep),
+ at/2
+ }
+ #declare phi = phi + phistep;
+ #end
+ pigment {
+ color Orange
+ }
+ finish {
+ specular 0.9
+ metallic
+ }
+}
+
+arrow(vdot(K,X)*K, punkt(X, 0), at, Yellow)
+#declare Darkgreen = rgb<0,0.5,0>;
+arrow(vdot(K,X)*K, punkt(X, pi/2), at, Darkgreen)
diff --git a/vorlesungen/slides/7/kommutator.tex b/vorlesungen/slides/7/kommutator.tex new file mode 100644 index 0000000..9000160 --- /dev/null +++ b/vorlesungen/slides/7/kommutator.tex @@ -0,0 +1,166 @@ +%
+% template.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Kommutator in $\operatorname{SO}(3)$}
+\vspace{-20pt}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\def\t{14.0cm}
+\ifthenelse{\boolean{presentation}}{
+\only<1>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c01.jpg}};}
+\only<2>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c02.jpg}};}
+\only<3>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c03.jpg}};}
+\only<4>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c04.jpg}};}
+\only<5>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c05.jpg}};}
+\only<6>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c06.jpg}};}
+\only<7>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c07.jpg}};}
+\only<8>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c08.jpg}};}
+\only<9>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c09.jpg}};}
+\only<10>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c10.jpg}};}
+\only<11>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c11.jpg}};}
+\only<12>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c12.jpg}};}
+\only<13>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c13.jpg}};}
+\only<14>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c14.jpg}};}
+\only<15>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c15.jpg}};}
+\only<16>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c16.jpg}};}
+\only<17>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c17.jpg}};}
+\only<18>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c18.jpg}};}
+\only<19>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c19.jpg}};}
+\only<20>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c20.jpg}};}
+\only<21>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c21.jpg}};}
+\only<22>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c22.jpg}};}
+\only<23>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c23.jpg}};}
+\only<24>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c24.jpg}};}
+\only<25>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c25.jpg}};}
+\only<26>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c26.jpg}};}
+\only<27>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c27.jpg}};}
+\only<28>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c28.jpg}};}
+\only<29>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c29.jpg}};}
+\only<30>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c30.jpg}};}
+\only<31>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c31.jpg}};}
+\only<32>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c32.jpg}};}
+\only<33>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c33.jpg}};}
+\only<34>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c34.jpg}};}
+\only<35>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c35.jpg}};}
+\only<36>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c36.jpg}};}
+\only<37>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c37.jpg}};}
+\only<38>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c38.jpg}};}
+\only<39>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c39.jpg}};}
+\only<40>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c40.jpg}};}
+\only<41>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c41.jpg}};}
+\only<42>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c42.jpg}};}
+\only<43>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c43.jpg}};}
+\only<44>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c44.jpg}};}
+\only<45>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c45.jpg}};}
+\only<46>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c46.jpg}};}
+\only<47>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c47.jpg}};}
+\only<48>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c48.jpg}};}
+\only<49>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c49.jpg}};}
+\only<50>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c50.jpg}};}
+\only<51>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c51.jpg}};}
+\only<52>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c52.jpg}};}
+\only<53>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c53.jpg}};}
+\only<54>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c54.jpg}};}
+\only<55>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c55.jpg}};}
+\only<56>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c56.jpg}};}
+\only<57>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c57.jpg}};}
+\only<58>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c58.jpg}};}
+\only<59>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c59.jpg}};}
+}{}
+\only<60>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c60.jpg}};}
+\coordinate (A) at (-0.3,3);
+\coordinate (B) at (-1.1,2);
+\coordinate (C) at (-2.1,-1.2);
+\draw[->,color=red,line width=1.4pt]
+ (A)
+ to[out=-143,in=60]
+ (B)
+ to[out=-120,in=80]
+ (C);
+%\fill[color=red] (B) circle[radius=0.08];
+\node[color=red] at (-1.2,1.5) [above left] {$D_{x,\alpha}$};
+\coordinate (D) at (0.3,3.2);
+\coordinate (E) at (1.8,2.8);
+\coordinate (F) at (5.2,-0.3);
+\draw[->,color=blue,line width=1.4pt]
+ (D)
+ to[out=-10,in=157]
+ (E)
+ to[out=-23,in=120]
+ (F);
+\fill[color=blue] (E) circle[radius=0.08];
+\node[color=blue] at (2.4,2.4) [above right] {$D_{y,\beta}$};
+\draw[->,color=darkgreen,line width=1.4pt]
+ (0.7,-3.1) to[out=1,in=-160] (3.9,-2.6);
+\node[color=darkgreen] at (2.5,-3.4) {$D_{z,\gamma}$};
+\end{tikzpicture}
+\end{center}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/7/kurven.tex b/vorlesungen/slides/7/kurven.tex new file mode 100644 index 0000000..bca8417 --- /dev/null +++ b/vorlesungen/slides/7/kurven.tex @@ -0,0 +1,104 @@ +%
+% kurven.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Kurven und Tangenten}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Kurven}
+Kurve in $\mathbb{R}^n$:
+\vspace{-12pt}
+\[
+\gamma
+\colon
+I=[a,b] \to \mathbb{R}^n
+:
+t\mapsto \gamma(t)
+\uncover<2->{
+=
+\begin{pmatrix}
+x_1(t)\\
+x_2(t)\\
+\vdots\\
+x_n(t)
+\end{pmatrix}
+}
+\]
+\vspace{-15pt}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\coordinate (A) at (1,0.5);
+\coordinate (B) at (4,0.5);
+\coordinate (C) at (2,2.2);
+\coordinate (D) at (5,2);
+\coordinate (E) at ($(C)+(80:2)$);
+
+\draw[color=red,line width=1.4pt]
+ (A) to[in=-160] (B) to[out=20,in=-100] (C) to[out=80] (D);
+\fill[color=red] (C) circle[radius=0.06];
+\node[color=red] at (C) [left] {$\gamma(t)$};
+
+\uncover<4->{
+ \draw[->,color=blue,line width=1.4pt,shorten <= 0.06cm] (C) -- (E);
+ \node[color=blue] at (E) [right] {$\dot{\gamma}(t)$};
+}
+
+\uncover<2->{
+ \draw[->] (-0.1,0) -- (5.9,0) coordinate[label={$x_1$}];
+ \draw[->] (0,-0.1) -- (0,4.3) coordinate[label={right:$x_2$}];
+}
+\end{tikzpicture}
+\end{center}
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<4->{%
+\begin{block}{Tangenten}
+Ableitung
+\[
+\frac{d}{dt}\gamma(t)
+=
+\dot{\gamma}(t)
+=
+\begin{pmatrix}
+\dot{x}_1(t)\\
+\dot{x}_2(t)\\
+\vdots\\
+\dot{x}_n(t)
+\end{pmatrix}
+\]
+\uncover<5->{%
+Lineare Approximation:
+\[
+\gamma(t+h)
+=
+\gamma(t)
++
+\dot{\gamma}(t) \cdot h
++
+o(h)
+\]}%
+\vspace{-10pt}
+\begin{itemize}
+\item<6->
+Sinnvoll, weil sowohl $\gamma(t)$ und $\dot{\gamma}(t)$
+in $\mathbb{R}^n$ liegen
+\item<7->
+Gilt auch für
+\[
+\operatorname{GL}_n(\mathbb{R})
+\uncover<8->{\subset M_n(\mathbb{R})}
+\uncover<9->{ = \mathbb{R}^{n\times n}}
+\]
+\end{itemize}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/7/liealgebra.tex b/vorlesungen/slides/7/liealgebra.tex new file mode 100644 index 0000000..59c9121 --- /dev/null +++ b/vorlesungen/slides/7/liealgebra.tex @@ -0,0 +1,85 @@ +%
+% liealgebra.tex -- Lie-Algebra
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Lie-Algebra}
+\ifthenelse{\boolean{presentation}}{\vspace{-15pt}}{\vspace{-8pt}}
+\begin{block}{Vektorraum}
+Tangentialvektoren im Punkt $I$:
+\begin{center}
+\begin{tabular}{>{$}c<{$}|p{6cm}|>{$}c<{$}}
+\text{Lie-Gruppe $G$}&Tangentialvektoren&\text{Lie-Algebra $LG$} \\
+\hline
+\uncover<2->{
+\operatorname{GL}_n(\mathbb{R})
+& beliebige Matrizen
+& M_n(\mathbb{R})
+}
+\\
+\uncover<3->{
+\operatorname{O(n)}
+& antisymmetrische Matrizen
+& \operatorname{o}(n)
+}
+\\
+\uncover<4->{
+\operatorname{SL}_n(\mathbb{R})
+& spurlose Matrizen
+& \operatorname{sl}_2(\mathbb{R})
+}
+\\
+\uncover<5->{
+\operatorname{U(n)}
+& antihermitesche Matrizen
+& \operatorname{u}(n)
+}
+\\
+\uncover<6->{
+\operatorname{SU(n)}
+& spurlose, antihermitesche Matrizen
+& \operatorname{su}(n)
+}
+\end{tabular}
+\end{center}
+\end{block}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.40\textwidth}
+\uncover<7->{%
+\begin{block}{Lie-Klammer}
+Kommutator: $[A,B] = AB-BA$
+\end{block}}
+\uncover<8->{%
+\begin{block}{Nachprüfen}
+$[A,B]\in LG$
+für $A,B\in LG$
+\end{block}}
+\end{column}
+\begin{column}{0.56\textwidth}
+\uncover<9->{%
+\begin{block}{Algebraische Eigenschaften}
+\begin{itemize}
+\item<10-> antisymmetrisch: $[A,B]=-[B,A]$
+\item<11-> Jacobi-Identität
+\[
+[A,[B,C]]+
+[B,[C,A]]+
+[C,[A,B]]
+= 0
+\]
+\end{itemize}
+\vspace{-13pt}
+\uncover<12->{%
+{\usebeamercolor[fg]{title}
+Beispiel:} $\mathbb{R}^3$ mit Vektorprodukt $\mathstrut = \operatorname{so}(3)$
+}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/7/mannigfaltigkeit.tex b/vorlesungen/slides/7/mannigfaltigkeit.tex new file mode 100644 index 0000000..f88042a --- /dev/null +++ b/vorlesungen/slides/7/mannigfaltigkeit.tex @@ -0,0 +1,46 @@ +%
+% mannigfaltigkeit.tex -- Mannigfaltigkeit
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Mannigfaltigkeit}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{center}
+\includegraphics[width=\textwidth]{../../buch/chapters/60-gruppen/images/karten.pdf}
+\end{center}
+\end{column}
+\begin{column}{0.48\textwidth}
+\begin{block}{Definition}
+\begin{itemize}
+\item<2-> Karte: Abbildung $\varphi_\alpha\colon U_\alpha\to\mathbb{R}^n$
+\item<3-> differenzierbare Kartenwechsel: Koordinatenumrechnung im Überschneidungsgebiet
+\[
+\varphi_\beta\circ\varphi_\alpha^{-1}
+\colon
+\varphi_\alpha(U_\alpha\cap U_\beta)
+\to
+\varphi_\beta(U_\alpha\cap U_\beta)
+\]
+\item<4-> Atlas: Menge von Karten, die die ganze Mannigfaltigkeit überdecken
+\end{itemize}
+\end{block}
+\vspace{-7pt}
+\uncover<5->{%
+\begin{block}{Lokal$\mathstrut\cong\mathbb{R}^n$}
+Differenzierbare Mannigfaltigkeiten sehen lokal wie $\mathbb{R}^n$ aus
+\end{block}}
+\vspace{-3pt}
+\uncover<6->{%
+\begin{block}{Lie-Gruppe}
+Gruppe und Mannigfaltigkeit
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/7/parameter.tex b/vorlesungen/slides/7/parameter.tex new file mode 100644 index 0000000..afc67c5 --- /dev/null +++ b/vorlesungen/slides/7/parameter.tex @@ -0,0 +1,107 @@ +%
+% parameter.tex -- Parametrisierung der Matrizen
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+\definecolor{darkyellow}{rgb}{1,0.8,0}
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Drehungen Parametrisieren}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.4\textwidth}
+\begin{block}{Drehung um Achsen}
+\vspace{-12pt}
+\begin{align*}
+\uncover<2->{
+D_{x,\alpha}
+&=
+\begin{pmatrix}
+1&0&0\\0&\cos\alpha&-\sin\alpha\\0&\sin\alpha&\cos\alpha
+\end{pmatrix}
+}
+\\
+\uncover<3->{
+D_{y,\beta}
+&=
+\begin{pmatrix}
+\cos\beta&0&\sin\beta\\0&1&0\\-\sin\beta&0&\cos\beta
+\end{pmatrix}
+}
+\\
+\uncover<4->{
+D_{z,\gamma}
+&=
+\begin{pmatrix}
+\cos\gamma&-\sin\gamma&0\\\sin\gamma&\cos\gamma&0\\0&0&1
+\end{pmatrix}
+}
+\intertext{\uncover<5->{beliebige Drehung:}}
+\uncover<5->{
+D
+&=
+D_{x,\alpha}
+D_{y,\beta}
+D_{z,\gamma}
+}
+\end{align*}
+\end{block}
+\end{column}
+\begin{column}{0.56\textwidth}
+\uncover<6->{%
+\begin{block}{Drehung um $\vec{\omega}\in\mathbb{R}^3$: 3-dimensional}
+\uncover<7->{%
+$\omega=|\vec{\omega}|=\mathstrut$Drehwinkel
+}
+\\
+\uncover<8->{%
+$\vec{k}=\vec{\omega}^0=\mathstrut$Drehachse
+}
+\[
+\uncover<9->{
+{\color{red}\vec{x}}
+\mapsto
+}
+\uncover<10->{
+({\color{darkyellow}\vec{x} -(\vec{k}\cdot\vec{x})\vec{k}})
+\cos\omega
++
+}
+\uncover<11->{
+({\color{darkgreen}\vec{x}\times\vec{k}}) \sin\omega
++
+}
+\uncover<9->{
+{\color{blue}\vec{k}} (\vec{k}\cdot\vec{x})
+}
+\]
+\vspace{-40pt}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\uncover<9->{
+ \node at (0,0)
+ {\includegraphics[width=\textwidth]{../slides/7/images/rodriguez.jpg}};
+ \node[color=red] at (1.6,-0.9) {$\vec{x}$};
+ \node[color=blue] at (0.5,2) {$\vec{k}$};
+}
+\uncover<11->{
+ \node[color=darkgreen] at (-3,1.1) {$\vec{x}\times\vec{k}$};
+}
+\uncover<10->{
+ \node[color=yellow] at (2.2,-0.2)
+ {$\vec{x}-(\vec{x}\cdot\vec{k})\vec{k}$};
+}
+\end{tikzpicture}
+\end{center}
+\end{block}}
+\end{column}
+\end{columns}
+\vspace{-15pt}
+\uncover<5->{%
+{\usebeamercolor[fg]{title}Dimension:} $\operatorname{SO}(3)$ ist eine
+dreidimensionale Gruppe}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/7/semi.tex b/vorlesungen/slides/7/semi.tex new file mode 100644 index 0000000..d74b7d0 --- /dev/null +++ b/vorlesungen/slides/7/semi.tex @@ -0,0 +1,117 @@ +%
+% semi.tex -- Beispiele: semidirekte Produkte
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Drehung/Skalierung und Verschiebung}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Skalierung und Verschiebung}
+Gruppe $G=\{(e^s,t)\;|\;s,t\in\mathbb{R}\}$
+\\
+Wirkung auf $\mathbb{R}$:
+\[
+x\mapsto \underbrace{e^s\cdot x}_{\text{Skalierung}} \mathstrut+ t
+\]
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<2->{%
+\begin{block}{Drehung und Verschiebung}
+Gruppe
+$G=
+\{ (\alpha,\vec{t})
+\;|\;
+\alpha\in\mathbb{R},\vec{t}\in\mathbb{R}^2
+\}$
+Wirkung auf $\mathbb{R}^2$:
+\[
+\vec{x}\mapsto \underbrace{D_\alpha \vec{x}}_{\text{Drehung}} \mathstrut+ \vec{t}
+\]
+\end{block}}
+\end{column}
+\end{columns}
+\vspace{-15pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\uncover<3->{%
+\begin{block}{Verknüpfung}
+\vspace{-15pt}
+\begin{align*}
+(e^{s_1},t_1)(e^{s_2},t_2)x
+&\uncover<4->{=
+(e^{s_1},t_1)(e^{s_2}x+t_2)}
+\\
+&\uncover<5->{=
+e^{s_1+s_2}x + e^{s_1}t_2+t_1}
+\\
+\uncover<6->{
+(e^{s_1},t_1)(e^{s_2},t_2)
+&=
+(e^{s_1}e^{s_2},t_1+e^{s_1}t_2)}
+\end{align*}
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<7->{%
+\begin{block}{Verknüpfung}
+\vspace{-15pt}
+\begin{align*}
+(\alpha_1,\vec{t}_1)
+(\alpha_2,\vec{t}_2)
+\vec{x}
+&\uncover<8->{=
+(\alpha_1,\vec{t}_1)(D_{\alpha_2}\vec{x}+\vec{t}_2)}
+\\
+&\uncover<9->{=D_{\alpha_1+\alpha_2}\vec{x} + D_{\alpha_1}\vec{t}_2+\vec{t}_1}
+\\
+\uncover<10->{
+(\alpha_1,\vec{t}_1)
+(\alpha_2,\vec{t}_2)
+&=
+(\alpha_1+\alpha_2, D_{\alpha_1}\vec{t}_2+\vec{t}_1)
+}
+\end{align*}
+\end{block}}
+\end{column}
+\end{columns}
+\vspace{-10pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\uncover<11->{%
+\begin{block}{Matrixschreibweise}
+\vspace{-12pt}
+\[
+g=(e^s,t) =
+\begin{pmatrix}
+e^s&t\\
+0&1
+\end{pmatrix}
+\quad\text{auf}\quad
+\begin{pmatrix}x\\1\end{pmatrix}
+\]
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<12->{%
+\begin{block}{Matrixschreibweise}
+\vspace{-12pt}
+\[
+g=(\alpha,\vec{t}) =
+\begin{pmatrix}
+D_{\alpha}&\vec{t}\\
+0&1
+\end{pmatrix}
+\quad\text{auf}\quad
+\begin{pmatrix}\vec{x}\\1\end{pmatrix}
+\]
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/7/sl2.tex b/vorlesungen/slides/7/sl2.tex new file mode 100644 index 0000000..58e87a1 --- /dev/null +++ b/vorlesungen/slides/7/sl2.tex @@ -0,0 +1,242 @@ +%
+% sl2.tex -- Beispiel: Parametrisierung von SL_2(R)
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t,fragile]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{$\operatorname{SL}_2(\mathbb{R})\subset\operatorname{GL}_n(\mathbb{R})$}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.44\textwidth}
+\begin{block}{Determinante}
+\[
+A=\begin{pmatrix}
+a&b\\
+c&d
+\end{pmatrix}
+\;\Rightarrow\;
+\det A = ad-bc
+\]
+\end{block}
+\end{column}
+\begin{column}{0.52\textwidth}
+\begin{block}{Dimension}
+\[
+4\; \text{Variablen}
+-
+1\; \text{Bedingung}
+=
+3\; \text{Dimensionen}
+\]
+\end{block}
+\end{column}
+\end{columns}
+\vspace{-10pt}
+\uncover<3->{%
+\begin{columns}[t,onlytextwidth]
+\def\s{0.94}
+\begin{column}{0.33\textwidth}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick,scale=\s]
+\begin{scope}
+ \clip (-2.1,-2.1) rectangle (2.3,2.3);
+ \fill[color=blue!20] (-1,-1) rectangle (1,1);
+ \foreach \x in {-2,...,2}{
+ \draw[color=blue,line width=0.3pt] (\x,-3) -- (\x,3);
+ }
+ \foreach \y in {-2,...,2}{
+ \draw[color=blue,line width=0.3pt] (-3,\y) -- (3,\y);
+ }
+ \ifthenelse{\boolean{presentation}}{
+ \foreach \d in {4,...,10}{
+ \only<\d>{
+ \pgfmathparse{1+(\d-4)/10}
+ \xdef\t{\pgfmathresult}
+ \fill[color=red!40,opacity=0.5]
+ ({-\t},{-1/\t}) rectangle (\t,{1/\t});
+ \foreach \x in {-2,...,2}{
+ \draw[color=red,line width=0.3pt]
+ ({\x*\t},-3) -- ({\x*\t},3);
+ }
+ \foreach \y in {-3,...,3}{
+ \draw[color=red,line width=0.3pt]
+ (-3,{\y/\t}) -- (3,{\y/\t});
+ }
+ }
+ }
+ }{}
+ \uncover<11->{
+ \xdef\t{1.6}
+ \fill[color=red!40,opacity=0.5]
+ ({-\t},{-1/\t}) rectangle (\t,{1/\t});
+ \foreach \x in {-2,...,2}{
+ \draw[color=red,line width=0.3pt]
+ ({\x*\t},-3) -- ({\x*\t},3);
+ }
+ \foreach \y in {-3,...,3}{
+ \draw[color=red,line width=0.3pt]
+ (-3,{\y/\t}) -- (3,{\y/\t});
+ }
+ }
+\end{scope}
+\draw[->] (-2.1,0) -- (2.3,0) coordinate[label={$x$}];
+\draw[->] (0,-2.1) -- (0,2.3) coordinate[label={right:$y$}];
+\uncover<3->{%
+ \fill[color=white,opacity=0.8] (-1.5,-2.8) rectangle (1.5,-1.3);
+ \node at (0,-2.1) {$
+ D
+ =
+ \begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix}
+ $};
+}
+\end{tikzpicture}
+\end{center}
+\end{column}
+\begin{column}{0.33\textwidth}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick,scale=\s]
+\fill[color=blue!20] (-1,-1) rectangle (1,1);
+\begin{scope}
+ \clip (-2.1,-2.1) rectangle (2.3,2.3);
+ \foreach \x in {-2,...,2}{
+ \draw[color=blue,line width=0.3pt] (\x,-3) -- (\x,3);
+ }
+ \foreach \y in {-2,...,2}{
+ \draw[color=blue,line width=0.3pt] (-3,\y) -- (3,\y);
+ }
+ \ifthenelse{\boolean{presentation}}{
+ \foreach \d in {11,...,17}{
+ \only<\d>{
+ \pgfmathparse{(\d-11)/10}
+ \xdef\t{\pgfmathresult}
+ \fill[color=red!40,opacity=0.5]
+ ({-1+\t*(-1)},{-1})
+ --
+ ({1+\t*(-1)},{-1})
+ --
+ ({1+\t},{1})
+ --
+ ({-1+\t},{1})
+ -- cycle;
+ \foreach \x in {-3,...,3}{
+ \draw[color=red,line width=0.3pt]
+ ({\x+\t*(-3)},-3) -- ({\x+\t*(3)},3);
+ }
+ \foreach \y in {-3,...,3}{
+ \draw[color=red,line width=0.3pt]
+ ({-3+\t*\y},\y) -- ({3+\t*\y},\y);
+ }
+ }
+ }
+ }{}
+ \uncover<18->{
+ \xdef\t{0.6}
+ \fill[color=red!40,opacity=0.5]
+ ({-1+\t*(-1)},{-1})
+ --
+ ({1+\t*(-1)},{-1})
+ --
+ ({1+\t},{1})
+ --
+ ({-1+\t},{1})
+ -- cycle;
+ \foreach \x in {-3,...,3}{
+ \draw[color=red,line width=0.3pt]
+ ({\x+\t*(-3)},-3) -- ({\x+\t*(3)},3);
+ }
+ \foreach \y in {-3,...,3}{
+ \draw[color=red,line width=0.3pt]
+ ({-3+\t*\y},\y) -- ({3+\t*\y},\y);
+ }
+ }
+\end{scope}
+\draw[->] (-2.1,0) -- (2.3,0) coordinate[label={$x$}];
+\draw[->] (0,-2.1) -- (0,2.3) coordinate[label={right:$y$}];
+\uncover<11->{
+ \fill[color=white,opacity=0.8] (-1.5,-2.8) rectangle (1.5,-1.3);
+ \node at (0,-2.1) {$
+ S
+ =
+ \begin{pmatrix} 1&s\\ 0&1\end{pmatrix}
+ $};
+}
+\end{tikzpicture}
+\end{center}
+\end{column}
+\begin{column}{0.33\textwidth}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick,scale=\s]
+\fill[color=blue!20] (-1,-1) rectangle (1,1);
+\begin{scope}
+ \clip (-2.1,-2.1) rectangle (2.3,2.3);
+ \foreach \x in {-2,...,2}{
+ \draw[color=blue,line width=0.3pt] (\x,-3) -- (\x,3);
+ }
+ \foreach \y in {-2,...,2}{
+ \draw[color=blue,line width=0.3pt] (-3,\y) -- (3,\y);
+ }
+ \ifthenelse{\boolean{presentation}}{
+ \foreach \d in {18,...,24}{
+ \only<\d>{
+ \pgfmathparse{(\d-18)/10}
+ \xdef\t{\pgfmathresult}
+ \fill[color=red!40,opacity=0.5]
+ (-1,{\t*(-1)-1})
+ --
+ (1,{\t*1-1})
+ --
+ (1,{\t*1+1})
+ --
+ (-1,{\t*(-1)+1})
+ -- cycle;
+ \foreach \x in {-3,...,3}{
+ \draw[color=red,line width=0.3pt]
+ (\x,{\x*\t-3}) -- (\x,{\x*\t+3});
+ }
+ \foreach \y in {-3,...,3}{
+ \draw[color=red,line width=0.3pt]
+ (-3,{-3*\t+\y}) -- (3,{3*\t+\y});
+ }
+ }
+ }
+ }{}
+ \uncover<25->{
+ \xdef\t{0.6}
+ \fill[color=red!40,opacity=0.5]
+ (-1,{\t*(-1)-1})
+ --
+ (1,{\t*1-1})
+ --
+ (1,{\t*1+1})
+ --
+ (-1,{\t*(-1)+1})
+ -- cycle;
+ \foreach \x in {-3,...,3}{
+ \draw[color=red,line width=0.3pt]
+ (\x,{\x*\t-3}) -- (\x,{\x*\t+3});
+ }
+ \foreach \y in {-3,...,3}{
+ \draw[color=red,line width=0.3pt]
+ (-3,{-3*\t+\y}) -- (3,{3*\t+\y});
+ }
+ }
+\end{scope}
+\draw[->] (-2.1,0) -- (2.3,0) coordinate[label={$x$}];
+\draw[->] (0,-2.1) -- (0,2.3) coordinate[label={right:$y$}];
+\uncover<18->{%
+\fill[color=white,opacity=0.8] (-1.5,-2.8) rectangle (1.5,-1.3);
+ \node at (0,-2.1) {$
+ T
+ =
+ \begin{pmatrix} 1&0\\t&1\end{pmatrix}
+ $};
+}
+\end{tikzpicture}
+\end{center}
+\end{column}
+\end{columns}}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/7/symmetrien.tex b/vorlesungen/slides/7/symmetrien.tex new file mode 100644 index 0000000..8931a24 --- /dev/null +++ b/vorlesungen/slides/7/symmetrien.tex @@ -0,0 +1,145 @@ +%
+% symmetrien.tex -- Symmetrien
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Symmetrien}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Diskrete Symmetrien}
+\begin{itemize}
+\item<2->
+Ebenen-Spiegelung:
+\[
+{\tiny
+\begin{pmatrix*}[r] x_1\\x_2\\x_3 \end{pmatrix*}
+}
+\mapsto
+{\tiny
+\begin{pmatrix*}[r]-x_1\\x_2\\x_3 \end{pmatrix*}
+}
+\uncover<4->{\!,\;
+\vec{x}
+\mapsto
+\vec{x} -2 (\vec{n}\cdot\vec{x}) \vec{n}
+}
+\]
+\vspace{-10pt}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\def\a{10}
+\def\b{50}
+\def\r{2}
+\coordinate (O) at (0,0);
+\coordinate (A) at (\b:\r);
+\coordinate (B) at ({180+2*\a-\b}:\r);
+\coordinate (C) at ({90+\a}:{\r*cos(90+\a-\b)});
+\coordinate (N) at (\a:2);
+\coordinate (D) at (\a:{\r*cos(\b-\a)});
+\uncover<3->{
+\clip (-2.5,-0.45) rectangle (2.5,1.95);
+
+ \fill[color=darkgreen!20] (O) -- ({\a-90}:0.2) arc ({\a-90}:\a:0.2)
+ -- cycle;
+ \draw[->,color=darkgreen] (O) -- (N);
+ \node[color=darkgreen] at (N) [above] {$\vec{n}$};
+
+
+ \fill[color=blue!20] (C) -- ($(C)+(\a:0.2)$) arc (\a:{90+\a}:0.2)
+ -- cycle;
+ \fill[color=red] (O) circle[radius=0.06];
+ \draw[color=red] ({\a-90}:2) -- ({\a+90}:2);
+ \fill[color=blue] (C) circle[radius=0.06];
+ \draw[color=blue,line width=0.1pt] (A) -- (D);
+ \node[color=darkgreen] at (D) [below,rotate=\a]
+ {$(\vec{n}\cdot\vec{x})\vec{n}$};
+ \draw[color=blue,line width=0.5pt] (A)--(B);
+
+ \node[color=blue] at (A) [above right] {$\vec{x}$};
+ \node[color=blue] at (B) [above left] {$\vec{x}'$};
+
+ \node[color=red] at (O) [below left] {$O$};
+
+ \draw[->,color=blue,shorten <= 0.06cm,line width=1.4pt] (O) -- (A);
+ \draw[->,color=blue,shorten <= 0.06cm,line width=1.4pt] (O) -- (B);
+}
+
+\end{tikzpicture}
+\end{center}
+\vspace{-5pt}
+$\vec{n}$ ein Einheitsnormalenvektor auf der Ebene, $|\vec{n}|=1$
+\item<5->
+Punkt-Spiegelung:
+\[
+{\tiny
+\begin{pmatrix*}[r] x_1\\x_2\\x_3 \end{pmatrix*}
+}
+\mapsto
+-
+{\tiny
+\begin{pmatrix*}[r]x_1\\x_2\\x_3 \end{pmatrix*}
+}
+\]
+\end{itemize}
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<6->{%
+\begin{block}{Kontinuierliche Symmetrien}
+\begin{itemize}
+\item<7-> Translation:
+\(
+\vec{x} \mapsto \vec{x} + \vec{t}
+\)
+\item<8-> Drehung:
+\vspace{-3pt}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\def\a{25}
+\def\r{1.3}
+\coordinate (O) at (0,0);
+\begin{scope}
+\clip (-1.1,-0.1) rectangle (2.3,2.3);
+\draw[color=red] (O) circle[radius=2];
+\fill[color=blue!20] (O) -- (0:\r) arc (0:\a:\r) -- cycle;
+\fill[color=blue!20] (O) -- (90:\r) arc (90:{90+\a}:\r) -- cycle;
+\node at ({0.5*\a}:1) {$\alpha$};
+\node at ({90+0.5*\a}:1) {$\alpha$};
+\draw[->,color=blue,line width=1.4pt] (O) -- (\a:2);
+\draw[->,color=darkgreen,line width=1.4pt] (O) -- ({90+\a}:2);
+\end{scope}
+\draw[->] (-1.1,0) -- (2.3,0) coordinate[label={$x$}];
+\draw[->] (0,-0.1) -- (0,2.3) coordinate[label={right:$y$}];
+\end{tikzpicture}
+\end{center}
+\[
+\uncover<9->{%
+\begin{pmatrix}x\\y\end{pmatrix}
+\mapsto
+\begin{pmatrix}
+{\color{blue}\cos\alpha}&{\color{darkgreen}-\sin\alpha}\\
+{\color{blue}\sin\alpha}&{\color{darkgreen}\phantom{-}\cos\alpha}
+\end{pmatrix}
+\begin{pmatrix}x\\y\end{pmatrix}
+}
+\]
+\end{itemize}
+\end{block}}
+\vspace{-10pt}
+\uncover<10->{%
+\begin{block}{Definition}
+Längen/Winkel bleiben erhalten
+\\
+\uncover<11->{%
+$\Rightarrow$ $\exists$ Erhaltungsgrösse}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/Makefile.inc b/vorlesungen/slides/Makefile.inc index 4bf9348..130fa28 100644 --- a/vorlesungen/slides/Makefile.inc +++ b/vorlesungen/slides/Makefile.inc @@ -1,17 +1,21 @@ -# -# Makefile.inc -- additional depencencies -# -# (c) 2021 Prof Dr Andreas Müller, Hochschule Rapperswil -# -include ../slides/0/Makefile.inc -include ../slides/1/Makefile.inc -include ../slides/2/Makefile.inc -include ../slides/3/Makefile.inc -include ../slides/4/Makefile.inc -include ../slides/5/Makefile.inc -include ../slides/8/Makefile.inc -include ../slides/9/Makefile.inc - -slides = \ - $(chapter0) $(chapter1) $(chapter2) $(chapter3) $(chapter4) \ - $(chapter5) $(chapter8) $(chapter9) +#
+# Makefile.inc -- additional depencencies
+#
+# (c) 2021 Prof Dr Andreas Müller, Hochschule Rapperswil
+#
+include ../slides/0/Makefile.inc
+include ../slides/1/Makefile.inc
+include ../slides/2/Makefile.inc
+include ../slides/3/Makefile.inc
+include ../slides/4/Makefile.inc
+include ../slides/5/Makefile.inc
+include ../slides/6/Makefile.inc
+include ../slides/7/Makefile.inc
+include ../slides/8/Makefile.inc
+include ../slides/9/Makefile.inc
+include ../slides/a/Makefile.inc
+
+slides = \
+ $(chapter0) $(chapter1) $(chapter2) $(chapter3) $(chapter4) \
+ $(chapter5) $(chapter6) $(chapter7) $(chapter8) $(chapter9) \
+ $(chaptera)
diff --git a/vorlesungen/slides/a/Makefile.inc b/vorlesungen/slides/a/Makefile.inc new file mode 100644 index 0000000..0c7ab0b --- /dev/null +++ b/vorlesungen/slides/a/Makefile.inc @@ -0,0 +1,25 @@ +# +# Makefile.inc -- additional depencencies +# +# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +# +chaptera = \ + ../slides/a/dc/prinzip.tex \ + ../slides/a/dc/effizient.tex \ + ../slides/a/dc/beispiel.tex \ + \ + ../slides/a/ecc/gruppendh.tex \ + ../slides/a/ecc/kurve.tex \ + ../slides/a/ecc/inverse.tex \ + ../slides/a/ecc/operation.tex \ + ../slides/a/ecc/quadrieren.tex \ + ../slides/a/ecc/oakley.tex \ + \ + ../slides/a/aes/bytes.tex \ + ../slides/a/aes/sinverse.tex \ + ../slides/a/aes/blocks.tex \ + ../slides/a/aes/keys.tex \ + ../slides/a/aes/runden.tex \ + \ + ../slides/a/chapter.tex + diff --git a/vorlesungen/slides/a/aes/blocks.tex b/vorlesungen/slides/a/aes/blocks.tex new file mode 100644 index 0000000..9e95a86 --- /dev/null +++ b/vorlesungen/slides/a/aes/blocks.tex @@ -0,0 +1,193 @@ +% +% blocks.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\def\s{0.4} +\def\punkt#1#2{({#1*\s},{(3-#2)*\s})} +\def\feld#1#2#3{ + \fill[color=#3] \punkt{(#1-0.5)}{(#2+0.5)} + rectangle \punkt{(#1+0.5)}{(#2-0.5)}; +} +\definecolor{darkgreen}{rgb}{0,0.6,0} +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Blocks} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Blocks} +$4\times k$ Matrizen mit $k=4,\dots,8$ +\begin{center} +\begin{tikzpicture}[>=latex,thick] +\xdef\s{0.4} +\foreach \i in {0,...,31}{ + \pgfmathparse{mod(\i,4)} + \xdef\y{\pgfmathresult} + \pgfmathparse{int(\i/4)} + \xdef\x{\pgfmathresult} + \node at \punkt{\x}{\y} {\tiny $\i$}; +} +\foreach \x in {-0.5,0.5,...,7.5}{ + \draw \punkt{\x}{-0.5} -- \punkt{\x}{3.5}; +} +\foreach \y in {-0.5,0.5,...,3.5}{ + \draw \punkt{-0.5}{\y} -- \punkt{7.5}{\y}; +} +\end{tikzpicture} +\end{center} +\uncover<2->{% +Spalten sind $4$-dimensionale $\mathbb{F}_{2^8}$-Vektoren +} +\end{block} +\uncover<3->{% +\begin{block}{Zeilenshift} +\begin{center} +\begin{tikzpicture}[>=latex,thick] + +\xdef\s{0.35} + +\begin{scope} + \feld{0}{3}{red!20} + \feld{0}{2}{red!20} + \feld{0}{1}{red!20} + \feld{0}{0}{red!20} + + \feld{1}{3}{red!10} + \feld{1}{2}{red!10} + \feld{1}{1}{red!10} + \feld{1}{0}{red!10} + + \feld{2}{3}{yellow!20} + \feld{2}{2}{yellow!20} + \feld{2}{1}{yellow!20} + \feld{2}{0}{yellow!20} + + \feld{3}{3}{yellow!10} + \feld{3}{2}{yellow!10} + \feld{3}{1}{yellow!10} + \feld{3}{0}{yellow!10} + + \feld{4}{3}{darkgreen!20} + \feld{4}{2}{darkgreen!20} + \feld{4}{1}{darkgreen!20} + \feld{4}{0}{darkgreen!20} + + \feld{5}{3}{darkgreen!10} + \feld{5}{2}{darkgreen!10} + \feld{5}{1}{darkgreen!10} + \feld{5}{0}{darkgreen!10} + + \feld{6}{3}{blue!20} + \feld{6}{2}{blue!20} + \feld{6}{1}{blue!20} + \feld{6}{0}{blue!20} + + \feld{7}{3}{blue!10} + \feld{7}{2}{blue!10} + \feld{7}{1}{blue!10} + \feld{7}{0}{blue!10} + + \foreach \x in {-0.5,0.5,...,7.5}{ + \draw \punkt{\x}{-0.5} -- \punkt{\x}{3.5}; + } + \foreach \y in {-0.5,0.5,...,3.5}{ + \draw \punkt{-0.5}{\y} -- \punkt{7.5}{\y}; + } +\end{scope} + +\begin{scope}[xshift=3.5cm] + \feld{0}{0}{red!20} + \feld{1}{1}{red!20} + \feld{2}{2}{red!20} + \feld{3}{3}{red!20} + + \feld{1}{0}{red!10} + \feld{2}{1}{red!10} + \feld{3}{2}{red!10} + \feld{4}{3}{red!10} + + \feld{2}{0}{yellow!20} + \feld{3}{1}{yellow!20} + \feld{4}{2}{yellow!20} \feld{5}{3}{yellow!20} + + \feld{3}{0}{yellow!10} + \feld{4}{1}{yellow!10} + \feld{5}{2}{yellow!10} + \feld{6}{3}{yellow!10} + + \feld{4}{0}{darkgreen!20} + \feld{5}{1}{darkgreen!20} + \feld{6}{2}{darkgreen!20} + \feld{7}{3}{darkgreen!20} + + \feld{5}{0}{darkgreen!10} + \feld{6}{1}{darkgreen!10} + \feld{7}{2}{darkgreen!10} + \feld{0}{3}{darkgreen!10} + + \feld{6}{0}{blue!20} + \feld{7}{1}{blue!20} + \feld{0}{2}{blue!20} + \feld{1}{3}{blue!20} + + \feld{7}{0}{blue!10} + \feld{0}{1}{blue!10} + \feld{1}{2}{blue!10} + \feld{2}{3}{blue!10} + + \foreach \x in {-0.5,0.5,...,7.5}{ + \draw \punkt{\x}{-0.5} -- \punkt{\x}{3.5}; + } + \foreach \y in {-0.5,0.5,...,3.5}{ + \draw \punkt{-0.5}{\y} -- \punkt{7.5}{\y}; + } + + \node at \punkt{-1.5}{1.5} {$\rightarrow$}; +\end{scope} + +\end{tikzpicture} +\end{center} +\end{block}} +\end{column} +\begin{column}{0.50\textwidth} +\uncover<4->{% +\begin{block}{Spalten mischen} +Lineare Operation auf Spaltenvektoren mit Matrix +\begin{align*} +C&=\begin{pmatrix} +\texttt{02}_{16}&\texttt{03}_{16}&\texttt{01}_{16}&\texttt{01}_{16}\\ +\texttt{01}_{16}&\texttt{02}_{16}&\texttt{03}_{16}&\texttt{01}_{16}\\ +\texttt{01}_{16}&\texttt{01}_{16}&\texttt{02}_{16}&\texttt{03}_{16}\\ +\texttt{03}_{16}&\texttt{01}_{16}&\texttt{01}_{16}&\texttt{02}_{16} +\end{pmatrix} +\\ +\uncover<5->{ +\det C +&= +\texttt{0a}_{16} +} +\uncover<6->{ +\ne 0} +\uncover<7->{ +\quad\Rightarrow\quad \exists C^{-1} +} +\end{align*} +\end{block}} +\uncover<8->{% +\begin{block}{Als Polynommultiplikation} +Spalten = Polynome in $\mathbb{F}_{2^8}[Z]/(Z^4-1)$, +\\ +\uncover<9->{% +$C=\mathstrut$ Multiplikation mit +\[ +c(Z) = \texttt{03}_{16}Z^3 + Z^2 + Z + \texttt{02}_{16} +\] +} +\end{block}} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/a/aes/bytes.tex b/vorlesungen/slides/a/aes/bytes.tex new file mode 100644 index 0000000..e873e9a --- /dev/null +++ b/vorlesungen/slides/a/aes/bytes.tex @@ -0,0 +1,96 @@ +% +% bytes.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Bytes} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Endlicher Körper} +1 Byte = 8 bits: $\mathbb{F}_{2^8}$ +mit Minimalpolynom: +\[ +m(X) = X^8+X^4+X^3+X+1 +\] +\end{block} +\vspace{-10pt} +\uncover<2->{% +\begin{block}{Inverse $a^{-1}$} +Mit dem euklidischen Algorithmus +\[ +\begin{aligned} +sa+tm&=1 +&&\Rightarrow& +\uncover<3->{ +a^{-1} &= s} +\\ +& +&&& +\uncover<4->{ +\overline{a} +&= +\begin{cases} +a^{-1}&\; a\ne 0\\ +0 &\; a = 0 +\end{cases}} +\end{aligned} +\] +\end{block}} +\vspace{-10pt} +\uncover<5->{% +\begin{block}{Vektorraum} +$\mathbb{R}_{2^8}$ +ist ein $8$-dimensionaler $\mathbb{F}_2$-Vektorraum +\end{block}} +\end{column} +\begin{column}{0.48\textwidth} +\uncover<6->{% +\begin{block}{S-Box} +$S\colon a\mapsto A\overline{a}+q$ mit +\begin{align*} +\only<1-7>{\phantom{\mathstrut^{-1}}A} +\ifthenelse{\boolean{presentation}}{}{\only<8>{A^{-1}}} +&=\only<1-7>{\begin{pmatrix} +1&0&0&0&1&1&1&1\\ +1&1&0&0&0&1&1&1\\ +1&1&1&0&0&0&1&1\\ +1&1&1&1&0&0&0&1\\ +1&1&1&1&1&0&0&0\\ +0&1&1&1&1&1&0&0\\ +0&0&1&1&1&1&1&0\\ +0&0&0&1&1&1&1&1 +\end{pmatrix}} +\ifthenelse{\boolean{presentation}}{}{ +\only<8->{ +\begin{pmatrix} +0&0&1&0&0&1&0&1\\ +1&0&0&1&0&0&1&0\\ +0&1&0&0&1&0&0&1\\ +1&0&1&0&0&1&0&0\\ +0&1&0&1&0&0&1&0\\ +0&0&1&0&1&0&0&1\\ +1&0&0&1&0&1&0&0\\ +0&1&0&0&1&0&1&0 +\end{pmatrix}} +} +\\ +q&=X^7+X^6+X+1 +\end{align*} +\end{block}} +\vspace{-10pt} +\uncover<7->{% +\begin{block}{Inverse $S$-Box} +\vspace{-10pt} +\[ +S^{-1}(b) = \overline{A^{-1}(b-q)} +\] +\end{block}} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/a/aes/keys.tex b/vorlesungen/slides/a/aes/keys.tex new file mode 100644 index 0000000..d2ab712 --- /dev/null +++ b/vorlesungen/slides/a/aes/keys.tex @@ -0,0 +1,36 @@ +% +% keys.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Schlüsselerzeugung} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{center} +\includegraphics[width=\textwidth]{../../buch/chapters/90-crypto/images/keys.pdf} +\end{center} +\end{column} +\begin{column}{0.48\textwidth} +\begin{block}{Algorithmus} +\begin{enumerate} +\item<2-> +Startblock: begebener Schlüssel +\item<3-> +Zeilenpermutation: +$\pi=\mathstrut$ Multiplikation mit $Z^3=Z^{-1}$ +\item<4-> $S$-Box +\item<5-> $r_i$: Addition einer Konstanten +\[ +r_i = (\texttt{02}_{16})^{i-1} +\] +\end{enumerate} +\end{block} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/a/aes/runden.tex b/vorlesungen/slides/a/aes/runden.tex new file mode 100644 index 0000000..570b577 --- /dev/null +++ b/vorlesungen/slides/a/aes/runden.tex @@ -0,0 +1,47 @@ +% +% runden.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{$n$ Runden} +\vspace{-23pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Verschlüsselung} +In Runde $i=0,\dots,n-1$ +\begin{enumerate} +\item<2-> Wende die $S$-Box auf alle Bytes des Blocks an +\item<3-> Führe den Zeilenschift durch +\item<4-> Mische die Spalten +\item<5-> Berechne den Schlüsselblock $i$ ($i=0$: ursprünglicher Schlüssel) +\item<6-> Addiere (XOR) den Rundenschlüssel +\end{enumerate} +\end{block} +\end{column} +\begin{column}{0.48\textwidth} +\uncover<7->{% +\begin{block}{Entschlüsselung} +In Runde $i=0,\dots,n-1$ +\begin{enumerate} +\item<8-> Addiere den Rundenschlüssel $n-1-i$ +\item<9-> Invertiere Spaltenmischung (mit $C^{-1}$) +\item<10-> Invertiere den Zeilenshift +\item<11-> Wende $S^{-1}$ an auf jedes Byte +\end{enumerate} +\end{block}} +\end{column} +\end{columns} +\uncover<12->{% +\begin{block}{Charakteristika} +\begin{itemize} +\item<13-> Invertierbar +\item<14-> Skalierbar: beliebig grosse Blöcke (Vielfache von 32\,bit) +\item<15-> Keine ``magischen'' Schritte +\end{itemize} +\end{block}} +\end{frame} +\egroup diff --git a/vorlesungen/slides/a/aes/sinverse.tex b/vorlesungen/slides/a/aes/sinverse.tex new file mode 100644 index 0000000..059100e --- /dev/null +++ b/vorlesungen/slides/a/aes/sinverse.tex @@ -0,0 +1,15 @@ +% +% sinverse.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Inverse $S$-Box} +\begin{center} +\includegraphics[width=\textwidth]{../../buch/chapters/90-crypto/images/sbox.pdf} +\end{center} +\end{frame} +\egroup diff --git a/vorlesungen/slides/a/chapter.tex b/vorlesungen/slides/a/chapter.tex new file mode 100644 index 0000000..78eec84 --- /dev/null +++ b/vorlesungen/slides/a/chapter.tex @@ -0,0 +1,23 @@ +% +% chapter.tex +% +% (c) 2021 Prof Dr Andreas Müller, Hochschule Rapperswi +% + +\folie{a/dc/prinzip.tex} +\folie{a/dc/effizient.tex} +\folie{a/dc/beispiel.tex} + +\folie{a/ecc/gruppendh.tex} +\folie{a/ecc/kurve.tex} +\folie{a/ecc/inverse.tex} +\folie{a/ecc/operation.tex} +\folie{a/ecc/quadrieren.tex} +\folie{a/ecc/oakley.tex} + +\folie{a/aes/bytes.tex} +\folie{a/aes/sinverse.tex} +\folie{a/aes/blocks.tex} +\folie{a/aes/keys.tex} +\folie{a/aes/runden.tex} + diff --git a/vorlesungen/slides/a/dc/beispiel.tex b/vorlesungen/slides/a/dc/beispiel.tex new file mode 100644 index 0000000..4c99e9e --- /dev/null +++ b/vorlesungen/slides/a/dc/beispiel.tex @@ -0,0 +1,54 @@ +% +% beispiel.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\def\u#1#2{\uncover<#1->{#2}} +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Beispiel} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Aufgabe} +Berechne $1291^{17}\in\mathbb{F}_{2027}$ +\end{block} +\uncover<2->{% +\begin{block}{Exponent} +\vspace{-10pt} +\[ +17 = 2^4 + 1 += +\texttt{10001}_2 += +\texttt{0x11} +\] +\end{block}} +\end{column} +\begin{column}{0.48\textwidth} +\uncover<3->{% +\begin{block}{Divide-and-Conquor} +\begin{center} +\begin{tabular}{|>{$}r<{$}>{$}r<{$}|>{$}r<{$}|>{$}r<{$}|>{$}r<{$}|>{$}r<{$}|} +\hline +i&2^i& a^{2^i} & n & n_i & m \\ +\hline +0& 1& 1291 & 17 & \u{4}{1}&\u{5}{ 1291}\\ +1& 2& \u{6}{ 487}& \u{7}{8}& \u{8}{0}& \u{9}{\color{gray}1291}\\ +2& 4&\u{10}{ 10}&\u{11}{4}&\u{12}{0}&\u{13}{\color{gray}1291}\\ +3& 8&\u{14}{ 100}&\u{15}{2}&\u{16}{0}&\u{17}{\color{gray}1291}\\ +4& 16&\u{18}{1892}&\u{19}{1}&\u{20}{1}&\u{21}{ 37}\\ +\hline +\end{tabular} +\end{center} +\end{block}} +\uncover<22->{% +\begin{block}{Resultat} +\(1291^{17} \equiv 37\mod 2027\) +\end{block}} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/a/dc/effizient.tex b/vorlesungen/slides/a/dc/effizient.tex new file mode 100644 index 0000000..327ee7e --- /dev/null +++ b/vorlesungen/slides/a/dc/effizient.tex @@ -0,0 +1,65 @@ +% +% effizient.tex -- Effiziente Berechnung der Potenz +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\definecolor{darkgreen}{rgb}{0,0.6,0} +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Effiziente Berechnung} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Prinzip} +\begin{enumerate} +\item<3-> {\color{red}Bits mit Shift isolieren} +\item<4-> {\color{blue}Laufend reduzieren} +\item<5-> {\color{darkgreen}effizient quadrieren} +\end{enumerate} +\end{block} +\end{column} +\begin{column}{0.48\textwidth} +\begin{block}{Algorithmus} +\begin{center} +\begin{tikzpicture}[>=latex,thick] +\uncover<3->{ +\fill[color=red!20] (2.3,-2.44) rectangle (3.8,-1.98); +\fill[color=red!20] (1.45,-3.88) rectangle (3.2,-3.42); +} +\uncover<4->{ +\fill[color=blue!20] (2.15,-2.94) rectangle (3.7,-2.48); +} +\uncover<5->{ +\fill[color=darkgreen!20] (1.45,-4.37) rectangle (3.8,-3.91); +} +\node at (0,0) [below right] {\begin{minipage}{6cm}\obeylines +{\tt int potenz(int $a$, int $n$) \{}\\ +\hspace*{0.7cm}{\tt int m = 1;}\\ +\hspace*{0.7cm}{\tt int q = $a$;}\\ +\uncover<2->{% +\hspace*{0.7cm}{\tt while ($n$ > 0) \{}\\ +\uncover<3->{% +\hspace*{1.4cm}{\tt if (0x1 \& $n$) \{}\\ +\uncover<4->{% +\hspace*{2.1cm}{\tt m *= q;}\\ +}% +\hspace*{1.4cm}{\tt \}}\\ +\hspace*{1.4cm}{\tt $n$ >{}>= 1;}\\ +}% +\uncover<5->{% +\hspace*{1.4cm}{\tt q = sqr(q);}\\ +}% +\hspace*{0.7cm}{\tt \}}\\ +}% +\hspace*{0.7cm}{\tt return m;}\\ +{\tt \}} +\end{minipage}}; +\end{tikzpicture} +\end{center} +\end{block} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/a/dc/naiv.txt b/vorlesungen/slides/a/dc/naiv.txt new file mode 100644 index 0000000..bf5569d --- /dev/null +++ b/vorlesungen/slides/a/dc/naiv.txt @@ -0,0 +1,2 @@ +int m = 1, i = 0; +while (i++ < n) { m *= a; } diff --git a/vorlesungen/slides/a/dc/prinzip.tex b/vorlesungen/slides/a/dc/prinzip.tex new file mode 100644 index 0000000..c75af61 --- /dev/null +++ b/vorlesungen/slides/a/dc/prinzip.tex @@ -0,0 +1,86 @@ +% +% prinzip.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Potenzieren $\mod p$} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Aufgabe} +Berechne $a^n\in\mathbb{F}_p$ für grosses $n$ +\end{block} +\uncover<2->{% +\begin{block}{Mengengerüst} +\( +\log_2 n > 2000 +\) +\\ +\uncover<3->{% +RSA mit $N=pq$: Exponenten sind $e,d$, $e$ klein, aber +\( +ed\equiv 1 \mod \varphi(N) +\)} +\end{block}} +\uncover<4->{% +\begin{block}{Naive Idee} +\verbatiminput{../slides/a/dc/naiv.txt} +Laufzeit: $O(n) \uncover<5->{= O(2^{\log_2n})}$% +\uncover<5->{, d.~h.~exponentiell in der Bitlänge von $n$} +\end{block}} +\end{column} +\begin{column}{0.48\textwidth} +\uncover<6->{% +\begin{block}{Idee 1: Exponent binär schreiben} +\vspace{-12pt} +\[ +n = n_k2^k + n_{k-1}2^{k-1} + \dots +n_12^1 + n_02^0 +\] +\end{block}} +\vspace{-5pt} +\uncover<7->{% +\begin{block}{Idee 2: Potenzgesetze} +\vspace{-12pt} +\[ +a^n += +a^{n_k2^k} +a^{n_{k-1}2^k} +\dots +a^{n_12^1} +a^{n_02^0} +\uncover<8->{= +\prod_{n_i = 1} +a^{2^i}} +\] +\end{block}} +\vspace{-15pt} +\uncover<9->{% +\begin{block}{Idee 3: Quadrieren} +\vspace{-10pt} +\begin{align*} +a^{2^i} +&= +a^{2\cdot 2^{i-1}} +\uncover<10->{= +(a^{2^{i-1}})^2} +\\ +&\uncover<11->{= +(\dots(a\underbrace{\mathstrut^2)^2\dots)^2}_{\displaystyle i}} +\end{align*} +\end{block}} +\vspace{-18pt} +\uncover<12->{% +\begin{block}{Laufzeit} +Multiplikationen: $\le 2 \cdot(\log_2(n) - 1)$ +\\ +\uncover<13->{Worst case Laufzeit: $O(\log_2 n)$} +\end{block}} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/a/ecc/gruppendh.tex b/vorlesungen/slides/a/ecc/gruppendh.tex new file mode 100644 index 0000000..13d85c8 --- /dev/null +++ b/vorlesungen/slides/a/ecc/gruppendh.tex @@ -0,0 +1,51 @@ +% +% template.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Diffie-Hellmann verallgemeinern} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Diffie-Hellman in $\mathbb{F}_p$\strut} +\begin{enumerate} +\item<2-> Parteien einigen sich auf $g\in \mathbb{F}_p$, $g\ne 0$, $g\ne 1$ +\item<3-> $A$ und $B$ wählen Exponenten $a,b\in \mathbb{N}$ +\item<4-> Parteien tauschen $u=g^a$ und $v=g^b$ aus +\item<5-> Parteien berechnen $v^a$ und $u^b$ +\[ +v^a = (g^b)^a = g^{ab} =(g^a)^b = u^b +\] +gemeinsamer privater Schlüssel +\end{enumerate} +\end{block} +\uncover<11->{% +{\usebeamercolor[fg]{title}Spezialfall:} $G=\mathbb{F}_p^*$ +} +\end{column} +\begin{column}{0.48\textwidth} +\uncover<6->{% +\begin{block}{Diffie-Hellmann in $G$\strut} +\begin{enumerate} +\item<7-> Parteien einigen sich auf $g\in G$, $g\ne e$ +\item<8-> $A$ und $B$ wählen Exponenten $a,b\in \mathbb{N}$ +\item<9-> Parteien tauschen $u=g^a$ und $v=g^b$ aus +\item<10-> Parteien berechnen $v^a$ und $u^b$ +\[ +v^a = (g^b)^a = g^{ab} =(g^a)^b = u^b +\] +gemeinsamer privater Schlüssel +\end{enumerate} +\end{block}} +\uncover<12->{% +{\usebeamercolor[fg]{title}Idee:} Wähle effizient zu berechnende, ``grosse'' +Gruppen, mit ``komplizierter'' Multiplikation +} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/a/ecc/inverse.tex b/vorlesungen/slides/a/ecc/inverse.tex new file mode 100644 index 0000000..c50f698 --- /dev/null +++ b/vorlesungen/slides/a/ecc/inverse.tex @@ -0,0 +1,48 @@ +% +% inverse.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Involution/Inverse} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{center} +\includegraphics[width=\textwidth]{../../buch/chapters/90-crypto/images/elliptic.pdf} +\end{center} +\end{column} +\begin{column}{0.48\textwidth} +\begin{block}{In speziellen Koordinaten} +\vspace{-12pt} +\[ +v^2 = u^3+Au+B +\] +\uncover<2->{invariant unter $v\mapsto -v$}% +\\ +\uncover<3->{{\color{red}geht nicht in $\mathbb{F}_2$}} +\end{block} +\uncover<4->{% +\begin{block}{Allgemein} +\vspace{-12pt} +\begin{align*} +Y^2+XY &= X^3 + aX+b +\\ +\uncover<5->{% +Y(Y+X) &= X^3 + aX + b} +\end{align*} +\uncover<6->{invariant unter} +\begin{align*} +\uncover<7->{X&\mapsto X,& Y&\mapsto -X-Y} +\\ +\uncover<8->{&&\Rightarrow X+Y&\mapsto -Y} +\end{align*} +\uncover<9->{Spezialfall $\mathbb{F}_2$: $Y\leftrightarrow X+Y$} +\end{block}} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/a/ecc/kurve.tex b/vorlesungen/slides/a/ecc/kurve.tex new file mode 100644 index 0000000..04d15f8 --- /dev/null +++ b/vorlesungen/slides/a/ecc/kurve.tex @@ -0,0 +1,56 @@ +% +% kurve.tex -- elliptische Kurven +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Elliptische Kurven} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{center} +\uncover<5->{% +\includegraphics[width=\textwidth]{../../buch/chapters/90-crypto/images/elliptic.pdf} +} +\end{center} +\end{column} +\begin{column}{0.48\textwidth} +\begin{block}{Allgemein} +mit $a,b\in\Bbbk$ +\[ +Y^2 + XY = X^3 + aX + b +\] +\end{block} +\vspace{-10pt} +\uncover<2->{% +\begin{block}{Spezielle Parametrisierung} +\vspace{-10pt} +\begin{align*} +Y^2 + XY + \frac14X^2 +&= +X^3 + \frac14X^2 + aX + b +\\ +\uncover<3->{ +(Y+\frac12X)^2 +&= +X^3 + \frac14X^2 + aX + b +}\\ +\uncover<4->{ +v^2 +&= +u^3+Au+B} +\end{align*} +\uncover<4->{mit +\[ +v=Y+{\textstyle\frac12}X, +\qquad +u=X-\frac1{12} +\]} +\end{block}} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/a/ecc/oakley.tex b/vorlesungen/slides/a/ecc/oakley.tex new file mode 100644 index 0000000..6980c10 --- /dev/null +++ b/vorlesungen/slides/a/ecc/oakley.tex @@ -0,0 +1,85 @@ +% +% oakley.tex -- Oakley Gruppen +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Oakley-Gruppen} +\only<1>{% +\small +\verbatiminput{../slides/a/ecc/oakley1.txt} +$\approx 1.55252\cdot 10^{231}$ +} +\only<2>{% +\begin{block}{$\mathbb{F}_p$} +Endlicher Körper mit $p = $ +\verbatiminput{../slides/a/ecc/prime1.txt} +\end{block} +} +\only<3>{% +\small +\verbatiminput{../slides/a/ecc/oakley2.txt} +} +\only<4>{% +\begin{block}{$\mathbb{F}_p$} +Endlicher Körper mit $p = $ +\verbatiminput{../slides/a/ecc/prime2.txt} +$\approx 1.7977\cdot 10^{308}$ +\end{block} +} +\only<5>{% +\small +\verbatiminput{../slides/a/ecc/oakley3.txt} +} +\only<6>{% +\begin{block}{Oakley Gruppe 3} +\begin{align*} +m(x) &= x^{155} + x^{62} + 1 +\\ +a &= 0 +\\ +b &= \texttt{0x07338f} +\\ +g_x &= 0x7b = x^6 + x^5 + x^4 + x^3 + x + 1 +\\ +&= +x^{18}+x^{17}+x^{16} ++ +x^{13}+x^{12} ++ +x^{9}+x^{8}+x^{7} ++ +x^{3}+x^{1}+x^{1}+1 +\\ +|G|&=45671926166590716193865565914344635196769237316 = 4.5672\cdot 10^{46} +\\ +\log_2|G|&=155\,\text{bit} +\end{align*} +\end{block}} +\only<7>{% +\small +\verbatiminput{../slides/a/ecc/oakley4.txt} +} +\only<8>{% +\begin{block}{Oakley Gruppe 4} +\begin{align*} +m(x) &= x^{185} + x^{69} + 1 +\\ +a &= 0 +\\ +b &= \texttt{0x1ee9} = x^{12} + x^{11}+x^{10}+x^9 + x^7+x^6+x^5 + x^3+1 +\\ +g_x &= \texttt{0x18} = x^4+x^3 +\\ +|G| &= 49039857307708443467467104857652682248052385001045053116 +\\ +&= 4.9040\cdot 10^{55} +\\ +\log_2|G| &= 185 +\end{align*} +\end{block}} +\end{frame} +\egroup diff --git a/vorlesungen/slides/a/ecc/oakley1.txt b/vorlesungen/slides/a/ecc/oakley1.txt new file mode 100644 index 0000000..4cc31ae --- /dev/null +++ b/vorlesungen/slides/a/ecc/oakley1.txt @@ -0,0 +1,14 @@ +6.1 First Oakley Default Group + + Oakley implementations MUST support a MODP group with the following + prime and generator. This group is assigned id 1 (one). + + The prime is: 2^768 - 2 ^704 - 1 + 2^64 * { [2^638 pi] + 149686 } + Its hexadecimal value is + + FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1 + 29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD + EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245 + E485B576 625E7EC6 F44C42E9 A63A3620 FFFFFFFF FFFFFFFF + + The generator is: 2. diff --git a/vorlesungen/slides/a/ecc/oakley2.txt b/vorlesungen/slides/a/ecc/oakley2.txt new file mode 100644 index 0000000..ddb2d2a --- /dev/null +++ b/vorlesungen/slides/a/ecc/oakley2.txt @@ -0,0 +1,16 @@ +6.2 Second Oakley Group + + IKE implementations SHOULD support a MODP group with the following + prime and generator. This group is assigned id 2 (two). + + The prime is 2^1024 - 2^960 - 1 + 2^64 * { [2^894 pi] + 129093 }. + Its hexadecimal value is + + FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1 + 29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD + EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245 + E485B576 625E7EC6 F44C42E9 A637ED6B 0BFF5CB6 F406B7ED + EE386BFB 5A899FA5 AE9F2411 7C4B1FE6 49286651 ECE65381 + FFFFFFFF FFFFFFFF + + The generator is 2 (decimal) diff --git a/vorlesungen/slides/a/ecc/oakley3.txt b/vorlesungen/slides/a/ecc/oakley3.txt new file mode 100644 index 0000000..ab2c78f --- /dev/null +++ b/vorlesungen/slides/a/ecc/oakley3.txt @@ -0,0 +1,17 @@ +6.3 Third Oakley Group + + IKE implementations SHOULD support a EC2N group with the following + characteristics. This group is assigned id 3 (three). The curve is + based on the Galois Field GF[2^155]. The field size is 155. The + irreducible polynomial for the field is: + u^155 + u^62 + 1. + The equation for the elliptic curve is: + y^2 + xy = x^3 + ax^2 + b. + + Field Size: 155 + Group Prime/Irreducible Polynomial: + 0x0800000000000000000000004000000000000001 + Group Generator One: 0x7b + Group Curve A: 0x0 + Group Curve B: 0x07338f + Group Order: 0X0800000000000000000057db5698537193aef944 diff --git a/vorlesungen/slides/a/ecc/oakley4.txt b/vorlesungen/slides/a/ecc/oakley4.txt new file mode 100644 index 0000000..3ec20cc --- /dev/null +++ b/vorlesungen/slides/a/ecc/oakley4.txt @@ -0,0 +1,17 @@ +6.4 Fourth Oakley Group + + IKE implementations SHOULD support a EC2N group with the following + characteristics. This group is assigned id 4 (four). The curve is + based on the Galois Field GF[2^185]. The field size is 185. The + irreducible polynomial for the field is: + u^185 + u^69 + 1. The + equation for the elliptic curve is: + y^2 + xy = x^3 + ax^2 + b. + + Field Size: 185 + Group Prime/Irreducible Polynomial: + 0x020000000000000000000000000000200000000000000001 + Group Generator One: 0x18 + Group Curve A: 0x0 + Group Curve B: 0x1ee9 + Group Order: 0X01ffffffffffffffffffffffdbf2f889b73e484175f94ebc diff --git a/vorlesungen/slides/a/ecc/operation.tex b/vorlesungen/slides/a/ecc/operation.tex new file mode 100644 index 0000000..61ef95d --- /dev/null +++ b/vorlesungen/slides/a/ecc/operation.tex @@ -0,0 +1,68 @@ +% +% operation.tex -- Gruppen-Operation auf einer elliptischen Kurve +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Gruppenoperation} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.40\textwidth} +\begin{center} +\includegraphics[width=\textwidth]{../../buch/chapters/90-crypto/images/elliptic.pdf} +\end{center} +\vspace{-23pt} +\uncover<8->{% +\begin{block}{Verifizieren} +\begin{enumerate} +\item<9-> Assoziativ? +\item<10-> Neutrales Element $\mathstrut=\infty$ +\item<11-> Involution = Inverse? +\end{enumerate} +\end{block}} +\end{column} +\begin{column}{0.56\textwidth} +\begin{block}{Gerade} +$g_1,g_2\in G$, $t\in \Bbbk$ +\begin{align*} +g(t) +&= +tg_1+(1-t)g_2 +\\ +\uncover<2->{ +\begin{pmatrix}X(t)\\Y(t)\end{pmatrix} +&= +t\begin{pmatrix}x_1\\y_1\end{pmatrix} ++ +(1-t)\begin{pmatrix}x_2\\y_2\end{pmatrix} +\in\Bbbk^2 +} +\end{align*} +\end{block} +\vspace{-13pt} +\uncover<3->{% +\begin{block}{3. Schnittpunkt} +$g(t)$ einsetzen in die elliptische Kurve +\[ +p(t) += +Y(t)^2+X(t)Y(t)-X(t)^3-aX(t)-b=0 +\] +\vspace{-12pt} +\begin{enumerate} +\item<4-> +kubisches Polynom mit Nullstellen $t=0,1$ +\item<5-> +$p(t) $ ist durch $t(t-1)$ teilbar +\item<6-> +$p(t) = t(t-1)(Jt+K)=0 +\uncover<7->{\Rightarrow t=-K/J$} +\end{enumerate} +\end{block}} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/a/ecc/prime1.txt b/vorlesungen/slides/a/ecc/prime1.txt new file mode 100644 index 0000000..eb4515d --- /dev/null +++ b/vorlesungen/slides/a/ecc/prime1.txt @@ -0,0 +1,5 @@ + 15 52518 09230 07089 35130 91813 12584 +81755 63133 40494 34514 31320 23511 94902 96623 99491 02107 +25866 94538 76591 64244 29100 07680 28886 42291 50803 71891 +80463 42632 72761 30312 82983 74438 08208 90196 28850 91706 +91316 59317 53674 69551 76311 98433 71637 22100 72105 77919 diff --git a/vorlesungen/slides/a/ecc/prime2.txt b/vorlesungen/slides/a/ecc/prime2.txt new file mode 100644 index 0000000..13458fb --- /dev/null +++ b/vorlesungen/slides/a/ecc/prime2.txt @@ -0,0 +1,8 @@ + 1797 69313 +48623 15907 70839 15679 37874 53197 86029 60487 56011 70644 +44236 84197 18021 61585 19368 94783 37958 64925 54150 21805 +65485 98050 36464 40548 19923 91000 50792 87700 33558 16639 +22955 31362 39076 50873 57599 14822 57486 25750 07425 30207 +74477 12589 55095 79377 78424 44242 66173 34727 62929 93876 +68709 20560 60502 70810 84290 76929 32019 12819 44676 27007 + diff --git a/vorlesungen/slides/a/ecc/primes b/vorlesungen/slides/a/ecc/primes new file mode 100644 index 0000000..3feea29 --- /dev/null +++ b/vorlesungen/slides/a/ecc/primes @@ -0,0 +1,13 @@ +#! /bin/bash +# +# primes +# +# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +# +bc <<EOF +ibase=16 +FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A63A3620FFFFFFFFFFFFFFFF + +FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE649286651ECE65381FFFFFFFFFFFFFFFF + +EOF diff --git a/vorlesungen/slides/a/ecc/quadrieren.tex b/vorlesungen/slides/a/ecc/quadrieren.tex new file mode 100644 index 0000000..942c73b --- /dev/null +++ b/vorlesungen/slides/a/ecc/quadrieren.tex @@ -0,0 +1,59 @@ +% +% quadrieren.tex -- Quadrieren +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Quadrieren} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.40\textwidth} +\begin{block}{Problem} +\( g = g_1 = g_2 \) +$\Rightarrow$ +Tangente +\\ +\uncover<2->{{\color{red}ohne Analysis!}} +\end{block} +\begin{center} +\includegraphics[width=\textwidth]{../../buch/chapters/90-crypto/images/elliptic.pdf} +\end{center} +\end{column} +\begin{column}{0.56\textwidth} +\uncover<3->{% +\begin{block}{Lösung} +Finde $h\in G$ derart, dass +\begin{align*} +g(t) +&= +tg + (1-t)h +\\ +\uncover<4->{% +\begin{pmatrix}X(t)\\Y(t)\end{pmatrix} +&= +t\begin{pmatrix}x_g\\y_g\end{pmatrix} ++(1-t) \begin{pmatrix}x_h\\y_h\end{pmatrix} +} +\end{align*} +\uncover<5->{eingesetzt +\[ +p(t) += +Y(t)^2+X(t)Y(t)-X(t)^3-aX(t)-b += +0 +\]}% +\uncover<6->{% +Nullstellen $0$ (doppelt) und $1$ hat:} +\[ +\uncover<7->{p(t) = c(t^3-t)} +\] +\uncover<8->{Koeffizientenvergleich: einfachere Gleichungen für $x_h$ und $y_h$} +\end{block}} +\end{column} +\end{columns} +\end{frame} +\egroup diff --git a/vorlesungen/slides/slides.tex b/vorlesungen/slides/slides.tex index b606375..6c24e22 100644 --- a/vorlesungen/slides/slides.tex +++ b/vorlesungen/slides/slides.tex @@ -47,15 +47,15 @@ \titel \input{5/chapter.tex} -%\title[Permutationen]{Permutationen} -%\section{Permutationen} -%\titel -%\input{6/chapter.tex} +\title[Permutationen]{Permutationen} +\section{Permutationen} +\titel +\input{6/chapter.tex} -%\title[Matrizengruppen]{Matrizengruppen} -%\section{Matrizengruppen} -%\titel -%\input{7/chapter.tex} +\title[Matrizengruppen]{Matrizengruppen} +\section{Matrizengruppen} +\titel +\input{7/chapter.tex} \title[Graphen]{Graphen} \section{Graphen} @@ -67,10 +67,10 @@ \titel \input{9/chapter.tex} -%\title[Krypto]{Anwendungen in Kryptographie und Codierungstheorie} -%\section{Krypto} -%\titel -%\input{a/chapter.tex} +\title[Krypto]{Anwendungen in Kryptographie und Codierungstheorie} +\section{Krypto} +\titel +\input{a/chapter.tex} %\title[Homologie]{Homologie} %\section{Homologie} diff --git a/vorlesungen/slides/test.tex b/vorlesungen/slides/test.tex index d079a05..ce63ae7 100644 --- a/vorlesungen/slides/test.tex +++ b/vorlesungen/slides/test.tex @@ -1,21 +1,23 @@ -% -% test.tex collection of all slides -% -% (c) 2019 Prof Dr Andreas Müller, Hochschule Rapperswil -% -%\folie{5/verzerrung.tex} -%\folie{5/plan.tex} -%\folie{5/planbeispiele.tex} -%\folie{5/approximation.tex} - -% XXX Visualisierung Cayley-Hamilton-Produkte -% XXX \folie{5/chvisual.tex} - -% XXX stone weierstrass incomplete -%\folie{5/stoneweierstrass.tex} -%\folie{5/swbeweis.tex} - -% XXX polynome auf dem spektrum -% XXX Motiviation für *-Operation -%\folie{5/normal.tex} -\folie{5/normalbeispiel34.tex} +%
+% test.tex collection of all slides
+%
+% (c) 2021 Prof Dr Andreas Müller, Hochschule Rapperswil
+%
+
+%\folie{a/dc/prinzip.tex}
+%\folie{a/dc/effizient.tex}
+%\folie{a/dc/beispiel.tex}
+
+%\folie{a/ecc/gruppendh.tex}
+%\folie{a/ecc/kurve.tex}
+%\folie{a/ecc/inverse.tex}
+%\folie{a/ecc/operation.tex}
+%\folie{a/ecc/quadrieren.tex}
+%\folie{a/ecc/oakley.tex}
+
+%\folie{a/aes/bytes.tex}
+%\folie{a/aes/sinverse.tex}
+%\folie{a/aes/blocks.tex}
+\folie{a/aes/keys.tex}
+%\folie{a/aes/runden.tex}
+
|